Files
Yolo-standalone/inference_yoloe.py
2026-01-08 15:12:27 +08:00

189 lines
7.0 KiB
Python

import torch
import cv2
import numpy as np
import torchvision
from pathlib import Path
from yolo11_standalone import YOLO11E, YOLOPostProcessor, YOLOPostProcessorNumpy
from mobile_clip_standalone import MobileCLIP
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
YOLO_WEIGHTS = "yoloe-11l-seg.pth"
CLIP_WEIGHTS = "mobileclip_blt.ts"
CLIP_SIZE = "blt"
IMAGE_PATH = "1.jpg"
CUSTOM_CLASSES = ["girl", "red balloon"]
COLORS = np.random.uniform(0, 255, size=(len(CUSTOM_CLASSES), 3))
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114)):
shape = im.shape[:2]
if isinstance(new_shape, int): new_shape = (new_shape, new_shape)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
dw, dh = dw / 2, dh / 2
if shape[::-1] != new_unpad:
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
return im, r, (dw, dh)
def xywh2xyxy(x):
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2
y[..., 1] = x[..., 1] - x[..., 3] / 2
y[..., 2] = x[..., 0] + x[..., 2] / 2
y[..., 3] = x[..., 1] + x[..., 3] / 2
return y
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.7, max_det=300):
prediction = prediction.transpose(1, 2)
bs = prediction.shape[0]
xc = prediction[..., 4:].max(-1)[0] > conf_thres
output = [torch.zeros((0, 6), device=prediction.device)] * bs
for xi, x in enumerate(prediction):
x = x[xc[xi]]
if not x.shape[0]: continue
box = xywh2xyxy(x[:, :4])
conf, j = x[:, 4:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
n = x.shape[0]
if not n: continue
elif n > max_det: x = x[x[:, 4].argsort(descending=True)[:max_det]]
c = x[:, 5:6] * 7680
boxes, scores = x[:, :4] + c, x[:, 4]
i = torchvision.ops.nms(boxes, scores, iou_thres)
output[xi] = x[i]
return output
def non_max_suppression_numpy(prediction, conf_thres=0.25, iou_thres=0.45, max_det=300):
bs = prediction.shape[0]
output = [np.zeros((0, 6), dtype=np.float32)] * bs
for xi, x in enumerate(prediction):
bbox_xywh = x[:, :4]
class_probs = x[:, 4:]
class_ids = np.argmax(class_probs, axis=1)
confidences = np.max(class_probs, axis=1)
mask = confidences > conf_thres
bbox_xywh = bbox_xywh[mask]
confidences = confidences[mask]
class_ids = class_ids[mask]
if len(confidences) == 0:
continue
bbox_tlwh = np.copy(bbox_xywh)
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2
indices = cv2.dnn.NMSBoxes(
bboxes=bbox_tlwh.tolist(),
scores=confidences.tolist(),
score_threshold=conf_thres,
nms_threshold=iou_thres
)
if len(indices) > 0:
indices = indices.flatten()
if len(indices) > max_det:
indices = indices[:max_det]
final_boxes_xywh = bbox_xywh[indices]
final_boxes_xyxy = xywh2xyxy(final_boxes_xywh)
final_scores = confidences[indices]
final_classes = class_ids[indices]
out_tensor = np.concatenate([
final_boxes_xyxy,
final_scores[:, None],
final_classes[:, None]
], axis=1)
output[xi] = out_tensor
return output
def main():
print(f"Using device: {DEVICE}")
print(f"Loading MobileCLIP from {CLIP_WEIGHTS}...")
if not Path(CLIP_WEIGHTS).exists(): raise FileNotFoundError(CLIP_WEIGHTS)
clip_model = MobileCLIP(checkpoint=CLIP_WEIGHTS, size=CLIP_SIZE, device=DEVICE)
print(f"Encoding classes: {CUSTOM_CLASSES}")
tokens = clip_model.tokenize([f"{c}" for c in CUSTOM_CLASSES])
text_embeddings = clip_model.encode_text(tokens).unsqueeze(0)
print(f"Loading YOLO11E from {YOLO_WEIGHTS}...")
if not Path(YOLO_WEIGHTS).exists(): raise FileNotFoundError(YOLO_WEIGHTS)
yolo_model = YOLO11E(nc=80, scale='l')
yolo_model.load_weights(YOLO_WEIGHTS)
yolo_model.to(DEVICE).eval()
head = yolo_model.model[-1]
post_processor = YOLOPostProcessor(head, use_segmentation=True)
post_processor.to(DEVICE).eval()
with torch.no_grad():
text_pe = head.get_tpe(text_embeddings)
yolo_model.set_classes(CUSTOM_CLASSES, text_pe)
img0 = cv2.imread(IMAGE_PATH)
assert img0 is not None, f"Image Not Found {IMAGE_PATH}"
img, ratio, (dw, dh) = letterbox(img0, new_shape=(640, 640))
img = np.ascontiguousarray(img[:, :, ::-1].transpose(2, 0, 1))
img_tensor = torch.from_numpy(img).to(DEVICE).float() / 255.0
if img_tensor.ndim == 3: img_tensor = img_tensor.unsqueeze(0)
print("Running inference...")
with torch.no_grad():
raw_outputs = yolo_model(img_tensor)
# decoded_box, mc, p = post_processor(raw_outputs)
# pred = non_max_suppression(decoded_box, conf_thres=0.25, iou_thres=0.7)
# det = pred[0]
feat_maps, mc, p = raw_outputs
feat_maps_numpy = [f.detach().cpu().numpy() for f in feat_maps]
mc_numpy = mc.detach().cpu().numpy()
p_numpy = p.detach().cpu().numpy()
raw_outputs_numpy = (feat_maps_numpy, mc_numpy, p_numpy)
post_processor_numpy = YOLOPostProcessorNumpy(strides=[8, 16, 32], reg_max=16, use_segmentation=True)
decoded_box_numpy, mc_numpy_out, p_numpy_out = post_processor_numpy(raw_outputs_numpy)
pred_results = non_max_suppression_numpy(decoded_box_numpy, conf_thres=0.25, iou_thres=0.7)
det = pred_results[0]
if len(det):
det[:, [0, 2]] -= dw
det[:, [1, 3]] -= dh
det[:, :4] /= ratio
# det[:, [0, 2]].clamp_(0, img0.shape[1])
# det[:, [1, 3]].clamp_(0, img0.shape[0])
det[:, 0] = np.clip(det[:, 0], 0, img0.shape[1])
det[:, 1] = np.clip(det[:, 1], 0, img0.shape[0])
det[:, 2] = np.clip(det[:, 2], 0, img0.shape[1])
det[:, 3] = np.clip(det[:, 3], 0, img0.shape[0])
print(f"Detected {len(det)} objects:")
for *xyxy, conf, cls in det:
c = int(cls)
label = f'{CUSTOM_CLASSES[c]} {conf:.2f}'
p1, p2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
color = COLORS[c % len(COLORS)]
cv2.rectangle(img0, p1, p2, color, 2, cv2.LINE_AA)
cv2.putText(img0, label, (p1[0], p1[1] - 5), 0, 0.5, color, 1, cv2.LINE_AA)
print(f" - {label}")
else:
print("No objects detected.")
cv2.imwrite("result_yoloe.jpg", img0)
print("Result saved.")
if __name__ == "__main__":
main()