168 lines
5.9 KiB
Python
168 lines
5.9 KiB
Python
import torch
|
||
import cv2
|
||
import numpy as np
|
||
import torchvision
|
||
from pathlib import Path
|
||
|
||
# 导入你的模块
|
||
from yolo11_standalone import YOLO11E
|
||
from mobile_clip_standalone import MobileCLIP
|
||
|
||
from ultralytics import YOLOE
|
||
|
||
|
||
# --- 配置 ---
|
||
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
YOLO_WEIGHTS = "yoloe-11l-seg.pth" # 替换为你的 YOLO 权重路径
|
||
CLIP_WEIGHTS = "mobileclip_blt.ts" # 替换为你的 MobileCLIP 权重路径
|
||
CLIP_SIZE = "blt" # 对应 MobileCLIP 的 size
|
||
IMAGE_PATH = "1.jpg" # 待检测图片
|
||
|
||
# 自定义检测类别 (Open Vocabulary)
|
||
CUSTOM_CLASSES = ["girl", "red balloon"]
|
||
|
||
# 绘图颜色
|
||
COLORS = np.random.uniform(0, 255, size=(len(CUSTOM_CLASSES), 3))
|
||
|
||
# --- 辅助函数 (Letterbox, NMS 等) ---
|
||
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114)):
|
||
shape = im.shape[:2]
|
||
if isinstance(new_shape, int): new_shape = (new_shape, new_shape)
|
||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
|
||
dw, dh = dw / 2, dh / 2
|
||
if shape[::-1] != new_unpad:
|
||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
||
return im, r, (dw, dh)
|
||
|
||
def xywh2xyxy(x):
|
||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||
y[..., 0] = x[..., 0] - x[..., 2] / 2
|
||
y[..., 1] = x[..., 1] - x[..., 3] / 2
|
||
y[..., 2] = x[..., 0] + x[..., 2] / 2
|
||
y[..., 3] = x[..., 1] + x[..., 3] / 2
|
||
return y
|
||
|
||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.7, max_det=300):
|
||
prediction = prediction.transpose(1, 2)
|
||
bs = prediction.shape[0]
|
||
xc = prediction[..., 4:].max(-1)[0] > conf_thres
|
||
output = [torch.zeros((0, 6), device=prediction.device)] * bs
|
||
for xi, x in enumerate(prediction):
|
||
x = x[xc[xi]]
|
||
if not x.shape[0]: continue
|
||
box = xywh2xyxy(x[:, :4])
|
||
conf, j = x[:, 4:].max(1, keepdim=True)
|
||
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
||
n = x.shape[0]
|
||
if not n: continue
|
||
elif n > max_det: x = x[x[:, 4].argsort(descending=True)[:max_det]]
|
||
c = x[:, 5:6] * 7680
|
||
boxes, scores = x[:, :4] + c, x[:, 4]
|
||
i = torchvision.ops.nms(boxes, scores, iou_thres)
|
||
output[xi] = x[i]
|
||
return output
|
||
|
||
def main():
|
||
print(f"Using device: {DEVICE}")
|
||
|
||
# 1. 加载 MobileCLIP 文本编码器
|
||
print(f"Loading MobileCLIP from {CLIP_WEIGHTS}...")
|
||
if not Path(CLIP_WEIGHTS).exists():
|
||
raise FileNotFoundError(f"MobileCLIP weights not found: {CLIP_WEIGHTS}")
|
||
|
||
clip_model = MobileCLIP(checkpoint=CLIP_WEIGHTS, size=CLIP_SIZE, device=DEVICE)
|
||
|
||
# 2. 生成文本 Embeddings
|
||
print(f"Encoding classes: {CUSTOM_CLASSES}")
|
||
prompts = [f"{c}" for c in CUSTOM_CLASSES]
|
||
|
||
tokens = clip_model.tokenize(prompts)
|
||
text_embeddings = clip_model.encode_text(tokens) # Shape: (N, 512)
|
||
|
||
# 调整维度为 (1, N, 512) 以匹配 YOLO11E 输入
|
||
text_embeddings = text_embeddings.unsqueeze(0)
|
||
|
||
# 3. 加载 YOLO11E 检测模型
|
||
print(f"Loading YOLO11E from {YOLO_WEIGHTS}...")
|
||
if not Path(YOLO_WEIGHTS).exists():
|
||
raise FileNotFoundError(f"YOLO weights not found: {YOLO_WEIGHTS}")
|
||
|
||
# 注意:scale='l' 必须与你的权重文件匹配 (s, m, l, x)
|
||
yolo_model = YOLO11E(nc=80, scale='l')
|
||
yolo_model.load_weights(YOLO_WEIGHTS)
|
||
yolo_model.to(DEVICE) # 使用半精度to(DEVICE)
|
||
yolo_model.eval()
|
||
|
||
head = yolo_model.model[-1]
|
||
|
||
with torch.no_grad():
|
||
text_pe = head.get_tpe(text_embeddings) # type: ignore
|
||
|
||
yolo_model.set_classes(CUSTOM_CLASSES, text_pe)
|
||
|
||
# 5. 图像预处理
|
||
img0 = cv2.imread(IMAGE_PATH)
|
||
assert img0 is not None, f"Image Not Found {IMAGE_PATH}"
|
||
img, ratio, (dw, dh) = letterbox(img0, new_shape=(640, 640))
|
||
img = img[:, :, ::-1].transpose(2, 0, 1)
|
||
img = np.ascontiguousarray(img)
|
||
img_tensor = torch.from_numpy(img).to(DEVICE)
|
||
img_tensor = img_tensor.float()
|
||
img_tensor /= 255.0
|
||
if img_tensor.ndim == 3:
|
||
img_tensor = img_tensor.unsqueeze(0)
|
||
|
||
# 6. 推理
|
||
print("Running inference...")
|
||
with torch.no_grad():
|
||
pred = yolo_model(img_tensor)
|
||
if isinstance(pred, tuple):
|
||
pred = pred[0]
|
||
nc = len(CUSTOM_CLASSES)
|
||
pred = pred[:, :4+nc, :]
|
||
|
||
# 7. 后处理 (NMS)
|
||
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.7)
|
||
|
||
print(pred)
|
||
|
||
# 8. 可视化
|
||
det = pred[0]
|
||
if len(det):
|
||
det[:, [0, 2]] -= dw
|
||
det[:, [1, 3]] -= dh
|
||
det[:, :4] /= ratio
|
||
det[:, 0].clamp_(0, img0.shape[1])
|
||
det[:, 1].clamp_(0, img0.shape[0])
|
||
det[:, 2].clamp_(0, img0.shape[1])
|
||
det[:, 3].clamp_(0, img0.shape[0])
|
||
|
||
print(f"Detected {len(det)} objects:")
|
||
for *xyxy, conf, cls in det:
|
||
c = int(cls)
|
||
class_name = CUSTOM_CLASSES[c] if c < len(CUSTOM_CLASSES) else str(c)
|
||
label = f'{class_name} {conf:.2f}'
|
||
|
||
p1, p2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
|
||
color = COLORS[c]
|
||
|
||
cv2.rectangle(img0, p1, p2, color, 2, cv2.LINE_AA)
|
||
t_size = cv2.getTextSize(label, 0, 0.5, 1)[0]
|
||
p2_label = p1[0] + t_size[0], p1[1] - t_size[1] - 3
|
||
cv2.rectangle(img0, p1, p2_label, color, -1, cv2.LINE_AA)
|
||
cv2.putText(img0, label, (p1[0], p1[1] - 2), 0, 0.5, [255, 255, 255], 1, cv2.LINE_AA)
|
||
print(f" - {label}")
|
||
else:
|
||
print("No objects detected.")
|
||
|
||
output_path = "result_full.jpg"
|
||
cv2.imwrite(output_path, img0)
|
||
print(f"Result saved to {output_path}")
|
||
|
||
if __name__ == "__main__":
|
||
main() |