Files
Yolo-standalone/mobileclip/modules/common/transformer.py
2025-12-27 02:14:11 +08:00

411 lines
14 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
"""
Implementation of the following modules is borrowed from ml-cvnets repo:
https://github.com/apple/ml-cvnets/blob/main/cvnets/layers/multi_head_attention.py
https://github.com/apple/ml-cvnets/blob/main/cvnets/text_encoders/transformer.py.
Please see ACKNOWLEDGMENTS for license details.
"""
from __future__ import annotations
import torch
from torch import Size, Tensor, nn
from torch.nn import functional as F
from torchvision.ops import StochasticDepth
from mobileclip import logger
class LayerNormFP32(nn.LayerNorm):
"""Applies `Layer Normalization <https://arxiv.org/abs/1607.06450>`_ over a input tensor with FP32 precision."""
def __init__(
self,
normalized_shape: int | list[int] | Size,
eps: float | None = 1e-5,
elementwise_affine: bool | None = True,
*args,
**kwargs,
):
super().__init__(
normalized_shape=normalized_shape,
eps=eps,
elementwise_affine=elementwise_affine,
*args,
**kwargs,
)
def forward(self, x: Tensor) -> Tensor:
# Convert input from dtype X to FP32 and perform normalization operation.
# This may help with underflow/overflow issues that we typically see with normalization layers
inp_dtype = x.dtype
return super().forward(x.to(torch.float32)).to(inp_dtype)
def get_normalization_layer(norm_type, num_features):
if norm_type == "layer_norm":
return nn.LayerNorm(num_features)
elif norm_type == "layer_norm_fp32":
return LayerNormFP32(num_features)
else:
raise NotImplementedError(f"Option: {norm_type} not supported.")
class PositionalEmbedding(nn.Module):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: int | None = None,
is_learnable: bool | None = False,
interpolation_mode: str | None = "bilinear",
*args,
**kwargs,
):
super().__init__()
# Add other pos embedding here and logic to choose between them
module = LearnablePositionalEmbedding
self.pos_embed = module(
num_embeddings=num_embeddings,
embedding_dim=embedding_dim,
padding_idx=padding_idx,
interpolation_mode=interpolation_mode,
*args,
**kwargs,
)
def forward(self, seq_len: int, *args, **kwargs) -> Tensor:
return self.pos_embed(seq_len, *args, **kwargs)
def __repr__(self):
return self.pos_embed.__repr__()
class LearnablePositionalEmbedding(nn.Module):
"""Learnable Positional embedding."""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: int | None = None,
interpolation_mode: str | None = "bilinear",
*args,
**kwargs,
):
super().__init__()
self.pos_embed = nn.Parameter(torch.empty(1, 1, num_embeddings, embedding_dim))
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.padding_idx = padding_idx
self.interpolation_mode = interpolation_mode
self.reset_parameters()
def reset_parameters(self) -> None:
nn.init.trunc_normal_(self.pos_embed, mean=0, std=self.embedding_dim**-0.5)
if self.padding_idx is not None:
with torch.no_grad():
self.pos_embed[:, :, self.padding_idx, ...] = 0.0
def forward(self, seq_len: int, *args, **kwargs) -> Tensor:
# scale pos embedding
pos_embed = self.pos_embed
if self.padding_idx is not None:
with torch.no_grad():
pos_embed[:, :, self.padding_idx, ...] = 0.0
if seq_len != self.num_embeddings:
pos_embed = F.interpolate(
pos_embed,
size=(seq_len, self.embedding_dim),
mode=self.interpolation_mode,
)
# Input is of the form [Batch, Seq_len, Embedding_dim]
return pos_embed.reshape(1, seq_len, self.embedding_dim)
def __repr__(self):
return f"{self.__class__.__name__}(num_embeddings={self.num_embeddings}, embedding_dim={self.embedding_dim}, padding_idx={self.padding_idx})"
class MultiHeadAttention(nn.Module):
"""This layer applies a multi-head self- or cross-attention as described in `Attention is all you need
<https://arxiv.org/abs/1706.03762>`_ paper.
Args:
embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(N, S, C_{in})`
num_heads (int): Number of heads in multi-head attention
attn_dropout (Optional[float]): Attention dropout. Default: 0.0
bias (Optional[bool]): Use bias or not. Default: ``True``
Notes:
- Input:
- Query tensor (x_q) :math:`(N, S, C_{in})` where :math:`N` is batch size, :math:`S` is number of source tokens,
and: math:`C_{in}` is input embedding dim
- Optional Key-Value tensor (x_kv) :math:`(N, T, C_{in})` where :math:`T` is number of target tokens
- Output: same shape as the input
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
attn_dropout: float | None = 0.0,
bias: bool | None = True,
output_dim: int | None = None,
*args,
**kwargs,
) -> None:
if output_dim is None:
output_dim = embed_dim
super().__init__()
if embed_dim % num_heads != 0:
logger.error(
f"Embedding dim must be divisible by number of heads in {self.__class__.__name__}. Got: embed_dim={embed_dim} and num_heads={num_heads}"
)
self.qkv_proj = nn.Linear(in_features=embed_dim, out_features=3 * embed_dim, bias=bias)
self.attn_dropout = nn.Dropout(p=attn_dropout)
self.out_proj = nn.Linear(in_features=embed_dim, out_features=output_dim, bias=bias)
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim**-0.5
self.softmax = nn.Softmax(dim=-1)
self.num_heads = num_heads
self.embed_dim = embed_dim
self.use_separate_proj_weight = embed_dim != output_dim
def __repr__(self):
return f"{self.__class__.__name__}(head_dim={self.head_dim}, num_heads={self.num_heads}, attn_dropout={self.attn_dropout.p})"
def _forward_impl(
self,
x_q: Tensor,
x_kv: Tensor | None = None,
key_padding_mask: Tensor | None = None,
attn_mask: Tensor | None = None,
) -> Tensor:
# [N, S, C]
b_sz, S_len, _in_channels = x_q.shape
if x_kv is None:
# self-attention
# [N, S, C] --> [N, S, 3C] --> [N, S, 3, h, c] where C = hc
qkv = self.qkv_proj(x_q).reshape(b_sz, S_len, 3, self.num_heads, -1)
# [N, S, 3, h, c] --> [N, h, 3, S, C]
qkv = qkv.transpose(1, 3).contiguous()
# [N, h, 3, S, C] --> [N, h, S, C] x 3
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
else:
T_len = x_kv.shape[1]
# cross-attention
# [N, S, C]
query = F.linear(
x_q,
weight=self.qkv_proj.weight[: self.embed_dim, ...],
bias=self.qkv_proj.bias[: self.embed_dim] if self.qkv_proj.bias is not None else None,
)
# [N, S, C] --> [N, S, h, c] --> [N, h, S, c]
query = query.reshape(b_sz, S_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
# [N, T, C] --> [N, T, 2C]
kv = F.linear(
x_kv,
weight=self.qkv_proj.weight[self.embed_dim :, ...],
bias=self.qkv_proj.bias[self.embed_dim :] if self.qkv_proj.bias is not None else None,
)
# [N, T, 2C] --> [N, T, 2, h, c]
kv = kv.reshape(b_sz, T_len, 2, self.num_heads, self.head_dim)
# [N, T, 2, h, c] --> [N, h, 2, T, c]
kv = kv.transpose(1, 3).contiguous()
key, value = kv[:, :, 0], kv[:, :, 1]
query = query * self.scaling
# [N h, T, c] --> [N, h, c, T]
key = key.transpose(-1, -2)
# QK^T
# [N, h, S, c] x [N, h, c, T] --> [N, h, S, T]
attn = torch.matmul(query, key)
batch_size, _num_heads, num_src_tokens, num_tgt_tokens = attn.shape
if attn_mask is not None:
# attn_mask shape should be the same as attn
assert list(attn_mask.shape) == [
batch_size,
num_src_tokens,
num_tgt_tokens,
], (
f"Shape of attention mask should be [{batch_size}, {num_src_tokens}, {num_tgt_tokens}]. Got: {attn_mask.shape}"
)
# [N, S, T] --> [N, 1, S, T]
attn_mask = attn_mask.unsqueeze(1)
attn = attn + attn_mask
if key_padding_mask is not None:
# Do not attend to padding positions
# key padding mask size is [N, T]
assert key_padding_mask.dim() == 2 and list(key_padding_mask.shape) == [
batch_size,
num_tgt_tokens,
], (
f"Key_padding_mask should be 2-dimension with shape [{batch_size}, {num_tgt_tokens}]. Got: {key_padding_mask.shape}"
)
attn = attn.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), # [N, T] --> [N, 1, 1, T]
float("-inf"),
)
attn_dtype = attn.dtype
attn_as_float = self.softmax(attn.float())
attn = attn_as_float.to(attn_dtype)
attn = self.attn_dropout(attn)
# weighted sum
# [N, h, S, T] x [N, h, T, c] --> [N, h, S, c]
out = torch.matmul(attn, value)
# [N, h, S, c] --> [N, S, h, c] --> [N, S, C]
out = out.transpose(1, 2).reshape(b_sz, S_len, -1)
out = self.out_proj(out)
return out
def forward(
self,
x_q: Tensor,
x_kv: Tensor | None = None,
key_padding_mask: Tensor | None = None,
attn_mask: Tensor | None = None,
*args,
**kwargs,
) -> Tensor:
# [Batch , Sequence, Hidden_dim]
return self._forward_impl(
x_q=x_q,
x_kv=x_kv,
key_padding_mask=key_padding_mask,
attn_mask=attn_mask,
)
class TransformerEncoder(nn.Module):
"""This class defines the pre-norm `Transformer encoder <https://arxiv.org/abs/1706.03762>`_.
Args:
embed_dim: :math:`C_{in}` from an expected input of size :math:`(N, P, C_{in})`.
ffn_latent_dim: Inner dimension of the FFN.
num_heads: Number of heads in multi-head attention. Default: 8.
attn_dropout: Dropout rate for attention in multi-head attention. Default: 0.0
dropout: Dropout rate. Default: 0.0.
ffn_dropout: Dropout between FFN layers. Default: 0.0.
transformer_norm_layer: Normalization layer. Default: layer_norm.
stochastic_dropout: Stochastic dropout setting. Default: 0.0.
Notes:
- Input: :math:`(N, P, C_{in})` where :math:`N` is batch size, :math:`P` is number of patches,
and: math:`C_{in}` is input embedding dim
- Output: same shape as the input
"""
def __init__(
self,
embed_dim: int,
ffn_latent_dim: int,
num_heads: int | None = 8,
attn_dropout: float | None = 0.0,
dropout: float | None = 0.0,
ffn_dropout: float | None = 0.0,
transformer_norm_layer: str | None = "layer_norm",
stochastic_dropout: float | None = 0.0,
*args,
**kwargs,
) -> None:
super().__init__()
# Build attention layer
attn_unit = MultiHeadAttention(
embed_dim,
num_heads,
attn_dropout=attn_dropout,
bias=True,
)
self.pre_norm_mha = nn.Sequential(
get_normalization_layer(norm_type=transformer_norm_layer, num_features=embed_dim),
attn_unit,
nn.Dropout(p=dropout),
)
act_name = nn.GELU()
self.pre_norm_ffn = nn.Sequential(
get_normalization_layer(norm_type=transformer_norm_layer, num_features=embed_dim),
nn.Linear(in_features=embed_dim, out_features=ffn_latent_dim, bias=True),
act_name,
nn.Dropout(p=ffn_dropout),
nn.Linear(in_features=ffn_latent_dim, out_features=embed_dim, bias=True),
nn.Dropout(p=dropout),
)
self.drop_path = nn.Identity()
if stochastic_dropout > 0.0:
if dropout > 0.0:
logger.error(
"Stochastic dropout and dropout are mutually exclusive. "
"Use either of them, but not both."
f"Got: {stochastic_dropout} and {dropout}"
)
self.drop_path = StochasticDepth(p=stochastic_dropout, mode="row")
self.embed_dim = embed_dim
self.ffn_dim = ffn_latent_dim
self.ffn_dropout = ffn_dropout
self.stochastic_dropout = stochastic_dropout
self.std_dropout = dropout
self.attn_fn_name = attn_unit.__class__.__name__
self.act_fn_name = act_name.__class__.__name__
self.norm_type = transformer_norm_layer
def __repr__(self) -> str:
return f"{self.__class__.__name__}(embed_dim={self.embed_dim}, ffn_dim={self.ffn_dim}, dropout={self.std_dropout}, ffn_dropout={self.ffn_dropout}, stochastic_dropout={self.stochastic_dropout}, attn_fn={self.attn_fn_name}, act_fn={self.act_fn_name}, norm_fn={self.norm_type})"
def forward(
self,
x: Tensor,
x_prev: Tensor | None = None,
key_padding_mask: Tensor | None = None,
attn_mask: Tensor | None = None,
*args,
**kwargs,
) -> Tensor:
# Multi-head attention
res = x
x = self.pre_norm_mha[0](x) # norm
x = self.pre_norm_mha[1](
x_q=x,
x_kv=x_prev,
key_padding_mask=key_padding_mask,
attn_mask=attn_mask,
*args,
**kwargs,
) # mha
x = self.drop_path(self.pre_norm_mha[2](x)) # applying stochastic depth
x = x + res
# Feed forward network
x = x + self.drop_path(self.pre_norm_ffn(x))
return x