178 lines
6.0 KiB
Python
178 lines
6.0 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
#
|
|
# For acknowledgment see accompanying ACKNOWLEDGMENTS file.
|
|
# Copyright (C) 2024 Apple Inc. All rights reserved.
|
|
#
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from timm.models.layers import SqueezeExcite
|
|
|
|
__all__ = ["ReparamLargeKernelConv"]
|
|
|
|
|
|
class ReparamLargeKernelConv(nn.Module):
|
|
"""Building Block of RepLKNet.
|
|
|
|
This class defines overparameterized large kernel conv block introduced in `RepLKNet
|
|
<https://arxiv.org/abs/2203.06717>`_
|
|
|
|
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int,
|
|
stride: int,
|
|
groups: int,
|
|
small_kernel: int,
|
|
inference_mode: bool = False,
|
|
use_se: bool = False,
|
|
activation: nn.Module = nn.GELU(),
|
|
) -> None:
|
|
"""Construct a ReparamLargeKernelConv module.
|
|
|
|
Args:
|
|
in_channels: Number of input channels.
|
|
out_channels: Number of output channels.
|
|
kernel_size: Kernel size of the large kernel conv branch.
|
|
stride: Stride size. Default: 1
|
|
groups: Group number. Default: 1
|
|
small_kernel: Kernel size of small kernel conv branch.
|
|
inference_mode: If True, instantiates model in inference mode. Default: ``False``
|
|
activation: Activation module. Default: ``nn.GELU``
|
|
"""
|
|
super().__init__()
|
|
|
|
self.stride = stride
|
|
self.groups = groups
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.activation = activation
|
|
|
|
self.kernel_size = kernel_size
|
|
self.small_kernel = small_kernel
|
|
self.padding = kernel_size // 2
|
|
|
|
# Check if SE is requested
|
|
if use_se:
|
|
self.se = SqueezeExcite(out_channels, rd_ratio=0.25)
|
|
else:
|
|
self.se = nn.Identity()
|
|
|
|
if inference_mode:
|
|
self.lkb_reparam = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=self.padding,
|
|
dilation=1,
|
|
groups=groups,
|
|
bias=True,
|
|
)
|
|
else:
|
|
self.lkb_origin = self._conv_bn(kernel_size=kernel_size, padding=self.padding)
|
|
if small_kernel is not None:
|
|
assert small_kernel <= kernel_size, (
|
|
"The kernel size for re-param cannot be larger than the large kernel!"
|
|
)
|
|
self.small_conv = self._conv_bn(kernel_size=small_kernel, padding=small_kernel // 2)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Apply forward pass."""
|
|
if hasattr(self, "lkb_reparam"):
|
|
out = self.lkb_reparam(x)
|
|
else:
|
|
out = self.lkb_origin(x)
|
|
if hasattr(self, "small_conv"):
|
|
out += self.small_conv(x)
|
|
|
|
return self.activation(self.se(out))
|
|
|
|
def get_kernel_bias(self) -> tuple[torch.Tensor, torch.Tensor]:
|
|
"""Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepLKNet-pytorch.
|
|
|
|
Returns:
|
|
Tuple of (kernel, bias) after fusing branches.
|
|
"""
|
|
eq_k, eq_b = self._fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
|
|
if hasattr(self, "small_conv"):
|
|
small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn)
|
|
eq_b += small_b
|
|
eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
|
|
return eq_k, eq_b
|
|
|
|
def reparameterize(self) -> None:
|
|
"""Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf.
|
|
We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like
|
|
structure for inference.
|
|
"""
|
|
eq_k, eq_b = self.get_kernel_bias()
|
|
self.lkb_reparam = nn.Conv2d(
|
|
in_channels=self.in_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=self.kernel_size,
|
|
stride=self.stride,
|
|
padding=self.padding,
|
|
dilation=self.lkb_origin.conv.dilation,
|
|
groups=self.groups,
|
|
bias=True,
|
|
)
|
|
|
|
self.lkb_reparam.weight.data = eq_k
|
|
self.lkb_reparam.bias.data = eq_b
|
|
self.__delattr__("lkb_origin")
|
|
if hasattr(self, "small_conv"):
|
|
self.__delattr__("small_conv")
|
|
|
|
@staticmethod
|
|
def _fuse_bn(conv: torch.Tensor, bn: nn.BatchNorm2d) -> tuple[torch.Tensor, torch.Tensor]:
|
|
"""Method to fuse batchnorm layer with conv layer.
|
|
|
|
Args:
|
|
conv: Convolutional kernel weights.
|
|
bn: Batchnorm 2d layer.
|
|
|
|
Returns:
|
|
Tuple of (kernel, bias) after fusing batchnorm.
|
|
"""
|
|
kernel = conv.weight
|
|
running_mean = bn.running_mean
|
|
running_var = bn.running_var
|
|
gamma = bn.weight
|
|
beta = bn.bias
|
|
eps = bn.eps
|
|
std = (running_var + eps).sqrt()
|
|
t = (gamma / std).reshape(-1, 1, 1, 1)
|
|
return kernel * t, beta - running_mean * gamma / std
|
|
|
|
def _conv_bn(self, kernel_size: int, padding: int = 0) -> nn.Sequential:
|
|
"""Helper method to construct conv-batchnorm layers.
|
|
|
|
Args:
|
|
kernel_size: Size of the convolution kernel.
|
|
padding: Zero-padding size.
|
|
|
|
Returns:
|
|
A nn.Sequential Conv-BN module.
|
|
"""
|
|
mod_list = nn.Sequential()
|
|
mod_list.add_module(
|
|
"conv",
|
|
nn.Conv2d(
|
|
in_channels=self.in_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=self.stride,
|
|
padding=padding,
|
|
groups=self.groups,
|
|
bias=False,
|
|
),
|
|
)
|
|
mod_list.add_module("bn", nn.BatchNorm2d(num_features=self.out_channels))
|
|
return mod_list
|