Files
Yolo-standalone/inference.py

148 lines
5.3 KiB
Python

import torch
import cv2
import numpy as np
import torchvision
from yolo11_standalone import YOLO11, YOLOPostProcessor
CLASSES = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush"
]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114)):
shape = im.shape[:2]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw, dh = dw / 2, dh / 2
if shape[::-1] != new_unpad:
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
return im, r, (dw, dh)
def xywh2xyxy(x):
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
return y
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, max_det=300):
prediction = prediction.transpose(1, 2)
bs = prediction.shape[0]
nc = prediction.shape[2] - 4
xc = prediction[..., 4:].max(-1)[0] > conf_thres
output = [torch.zeros((0, 6), device=prediction.device)] * bs
for xi, x in enumerate(prediction):
x = x[xc[xi]]
if not x.shape[0]:
continue
box = xywh2xyxy(x[:, :4])
conf, j = x[:, 4:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
n = x.shape[0]
if not n:
continue
elif n > max_det:
x = x[x[:, 4].argsort(descending=True)[:max_det]]
c = x[:, 5:6] * 7680 # classes
boxes, scores = x[:, :4] + c, x[:, 4]
i = torchvision.ops.nms(boxes, scores, iou_thres)
output[xi] = x[i]
return output
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = YOLO11(nc=80, scale='s')
model.load_weights("yolo11s.pth")
model.to(device)
model.eval()
post_std = YOLOPostProcessor(model.model[-1], use_segmentation=False)
img_path = "1.jpg"
img0 = cv2.imread(img_path)
assert img0 is not None, f"Image Not Found {img_path}"
img, ratio, (dw, dh) = letterbox(img0, new_shape=(640, 640))
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img_tensor = torch.from_numpy(img).to(device)
img_tensor = img_tensor.float()
img_tensor /= 255.0 # 0 - 255 to 0.0 - 1.0
if img_tensor.ndim == 3:
img_tensor = img_tensor.unsqueeze(0)
print("开始推理...")
with torch.no_grad():
pred = model(img_tensor)
pred = post_std(pred)
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
det = pred[0]
if len(det):
det[:, [0, 2]] -= dw # x padding
det[:, [1, 3]] -= dh # y padding
det[:, :4] /= ratio
det[:, 0].clamp_(0, img0.shape[1])
det[:, 1].clamp_(0, img0.shape[0])
det[:, 2].clamp_(0, img0.shape[1])
det[:, 3].clamp_(0, img0.shape[0])
print(f"检测到 {len(det)} 个目标")
for *xyxy, conf, cls in det:
c = int(cls)
label = f'{CLASSES[c]} {conf:.2f}'
p1, p2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
color = COLORS[c]
cv2.rectangle(img0, p1, p2, color, 2, lineType=cv2.LINE_AA)
t_size = cv2.getTextSize(label, 0, fontScale=0.5, thickness=1)[0]
p2_label = p1[0] + t_size[0], p1[1] - t_size[1] - 3
cv2.rectangle(img0, p1, p2_label, color, -1, cv2.LINE_AA)
cv2.putText(img0, label, (p1[0], p1[1] - 2), 0, 0.5, [255, 255, 255], thickness=1, lineType=cv2.LINE_AA)
print(f" - {label} at {p1}-{p2}")
cv2.imwrite("result.jpg", img0)
print("结果已保存至 result.jpg")
def import_os_exists(path):
import os
return os.path.exists(path)
if __name__ == "__main__":
main()