第一次提交Yolo项目
This commit is contained in:
888
mobileclip/models/mci.py
Normal file
888
mobileclip/models/mci.py
Normal file
@@ -0,0 +1,888 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# For licensing see accompanying LICENSE file.
|
||||
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models import register_model
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
|
||||
from mobileclip.modules.common.mobileone import MobileOneBlock
|
||||
from mobileclip.modules.image.replknet import ReparamLargeKernelConv
|
||||
|
||||
|
||||
def _cfg(url="", **kwargs):
|
||||
return {
|
||||
"url": url,
|
||||
"num_classes": 1000,
|
||||
"input_size": (3, 256, 256),
|
||||
"pool_size": None,
|
||||
"crop_pct": 0.95,
|
||||
"interpolation": "bicubic",
|
||||
"mean": IMAGENET_DEFAULT_MEAN,
|
||||
"std": IMAGENET_DEFAULT_STD,
|
||||
"classifier": "head",
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = {
|
||||
"fastvit_t": _cfg(crop_pct=0.9),
|
||||
"fastvit_s": _cfg(crop_pct=0.9),
|
||||
"fastvit_m": _cfg(crop_pct=0.95),
|
||||
}
|
||||
|
||||
|
||||
def convolutional_stem(in_channels: int, out_channels: int, inference_mode: bool = False) -> nn.Sequential:
|
||||
"""Build convolutional stem with MobileOne blocks.
|
||||
|
||||
Args:
|
||||
in_channels: Number of input channels.
|
||||
out_channels: Number of output channels.
|
||||
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
|
||||
|
||||
Returns:
|
||||
nn.Sequential object with stem elements.
|
||||
"""
|
||||
return nn.Sequential(
|
||||
MobileOneBlock(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
groups=1,
|
||||
inference_mode=inference_mode,
|
||||
use_se=False,
|
||||
num_conv_branches=1,
|
||||
),
|
||||
MobileOneBlock(
|
||||
in_channels=out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
groups=out_channels,
|
||||
inference_mode=inference_mode,
|
||||
use_se=False,
|
||||
num_conv_branches=1,
|
||||
),
|
||||
MobileOneBlock(
|
||||
in_channels=out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
groups=1,
|
||||
inference_mode=inference_mode,
|
||||
use_se=False,
|
||||
num_conv_branches=1,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class MHSA(nn.Module):
|
||||
"""Multi-headed Self Attention module.
|
||||
|
||||
Source modified from:
|
||||
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
head_dim: int = 32,
|
||||
qkv_bias: bool = False,
|
||||
attn_drop: float = 0.0,
|
||||
proj_drop: float = 0.0,
|
||||
) -> None:
|
||||
"""Build MHSA module that can handle 3D or 4D input tensors.
|
||||
|
||||
Args:
|
||||
dim: Number of embedding dimensions.
|
||||
head_dim: Number of hidden dimensions per head. Default: ``32``
|
||||
qkv_bias: Use bias or not. Default: ``False``
|
||||
attn_drop: Dropout rate for attention tensor.
|
||||
proj_drop: Dropout rate for projection tensor.
|
||||
"""
|
||||
super().__init__()
|
||||
assert dim % head_dim == 0, "dim should be divisible by head_dim"
|
||||
self.head_dim = head_dim
|
||||
self.num_heads = dim // head_dim
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shape = x.shape
|
||||
B, C, H, W = shape
|
||||
N = H * W
|
||||
if len(shape) == 4:
|
||||
x = torch.flatten(x, start_dim=2).transpose(-2, -1) # (B, N, C)
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
# trick here to make q@k.t more stable
|
||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
if len(shape) == 4:
|
||||
x = x.transpose(-2, -1).reshape(B, C, H, W)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""Convolutional patch embedding layer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int,
|
||||
stride: int,
|
||||
in_channels: int,
|
||||
embed_dim: int,
|
||||
inference_mode: bool = False,
|
||||
use_se: bool = False,
|
||||
) -> None:
|
||||
"""Build patch embedding layer.
|
||||
|
||||
Args:
|
||||
patch_size: Patch size for embedding computation.
|
||||
stride: Stride for convolutional embedding layer.
|
||||
in_channels: Number of channels of input tensor.
|
||||
embed_dim: Number of embedding dimensions.
|
||||
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
|
||||
use_se: If ``True`` SE block will be used.
|
||||
"""
|
||||
super().__init__()
|
||||
block = list()
|
||||
block.append(
|
||||
ReparamLargeKernelConv(
|
||||
in_channels=in_channels,
|
||||
out_channels=embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=stride,
|
||||
groups=in_channels,
|
||||
small_kernel=3,
|
||||
inference_mode=inference_mode,
|
||||
use_se=use_se,
|
||||
)
|
||||
)
|
||||
block.append(
|
||||
MobileOneBlock(
|
||||
in_channels=embed_dim,
|
||||
out_channels=embed_dim,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
groups=1,
|
||||
inference_mode=inference_mode,
|
||||
use_se=False,
|
||||
num_conv_branches=1,
|
||||
)
|
||||
)
|
||||
self.proj = nn.Sequential(*block)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RepMixer(nn.Module):
|
||||
"""Reparameterizable token mixer.
|
||||
|
||||
For more details, please refer to our paper: `FastViT: A Fast Hybrid Vision Transformer using Structural
|
||||
Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
kernel_size=3,
|
||||
use_layer_scale=True,
|
||||
layer_scale_init_value=1e-5,
|
||||
inference_mode: bool = False,
|
||||
):
|
||||
"""Build RepMixer Module.
|
||||
|
||||
Args:
|
||||
dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`.
|
||||
kernel_size: Kernel size for spatial mixing. Default: 3
|
||||
use_layer_scale: If True, learnable layer scale is used. Default: ``True``
|
||||
layer_scale_init_value: Initial value for layer scale. Default: 1e-5
|
||||
inference_mode: If True, instantiates model in inference mode. Default: ``False``
|
||||
"""
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.kernel_size = kernel_size
|
||||
self.inference_mode = inference_mode
|
||||
|
||||
if inference_mode:
|
||||
self.reparam_conv = nn.Conv2d(
|
||||
in_channels=self.dim,
|
||||
out_channels=self.dim,
|
||||
kernel_size=self.kernel_size,
|
||||
stride=1,
|
||||
padding=self.kernel_size // 2,
|
||||
groups=self.dim,
|
||||
bias=True,
|
||||
)
|
||||
else:
|
||||
self.norm = MobileOneBlock(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
groups=dim,
|
||||
use_act=False,
|
||||
use_scale_branch=False,
|
||||
num_conv_branches=0,
|
||||
)
|
||||
self.mixer = MobileOneBlock(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
groups=dim,
|
||||
use_act=False,
|
||||
)
|
||||
self.use_layer_scale = use_layer_scale
|
||||
if use_layer_scale:
|
||||
self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if hasattr(self, "reparam_conv"):
|
||||
x = self.reparam_conv(x)
|
||||
return x
|
||||
else:
|
||||
if self.use_layer_scale:
|
||||
x = x + self.layer_scale * (self.mixer(x) - self.norm(x))
|
||||
else:
|
||||
x = x + self.mixer(x) - self.norm(x)
|
||||
return x
|
||||
|
||||
def reparameterize(self) -> None:
|
||||
"""Reparameterize mixer and norm into a single convolutional layer for efficient inference."""
|
||||
if self.inference_mode:
|
||||
return
|
||||
|
||||
self.mixer.reparameterize()
|
||||
self.norm.reparameterize()
|
||||
|
||||
if self.use_layer_scale:
|
||||
w = self.mixer.id_tensor + self.layer_scale.unsqueeze(-1) * (
|
||||
self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight
|
||||
)
|
||||
b = torch.squeeze(self.layer_scale) * (self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias)
|
||||
else:
|
||||
w = self.mixer.id_tensor + self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight
|
||||
b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
|
||||
|
||||
self.reparam_conv = nn.Conv2d(
|
||||
in_channels=self.dim,
|
||||
out_channels=self.dim,
|
||||
kernel_size=self.kernel_size,
|
||||
stride=1,
|
||||
padding=self.kernel_size // 2,
|
||||
groups=self.dim,
|
||||
bias=True,
|
||||
)
|
||||
self.reparam_conv.weight.data = w
|
||||
self.reparam_conv.bias.data = b
|
||||
|
||||
for para in self.parameters():
|
||||
para.detach_()
|
||||
self.__delattr__("mixer")
|
||||
self.__delattr__("norm")
|
||||
if self.use_layer_scale:
|
||||
self.__delattr__("layer_scale")
|
||||
|
||||
|
||||
class ConvFFN(nn.Module):
|
||||
"""Convolutional FFN Module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
hidden_channels: int | None = None,
|
||||
out_channels: int | None = None,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
drop: float = 0.0,
|
||||
) -> None:
|
||||
"""Build convolutional FFN module.
|
||||
|
||||
Args:
|
||||
in_channels: Number of input channels.
|
||||
hidden_channels: Number of channels after expansion. Default: None
|
||||
out_channels: Number of output channels. Default: None
|
||||
act_layer: Activation layer. Default: ``GELU``
|
||||
drop: Dropout rate. Default: ``0.0``.
|
||||
"""
|
||||
super().__init__()
|
||||
out_channels = out_channels or in_channels
|
||||
hidden_channels = hidden_channels or in_channels
|
||||
self.conv = nn.Sequential()
|
||||
self.conv.add_module(
|
||||
"conv",
|
||||
nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=7,
|
||||
padding=3,
|
||||
groups=in_channels,
|
||||
bias=False,
|
||||
),
|
||||
)
|
||||
self.conv.add_module("bn", nn.BatchNorm2d(num_features=out_channels))
|
||||
self.fc1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=1)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=1)
|
||||
self.drop = nn.Dropout(drop)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m: nn.Module) -> None:
|
||||
if isinstance(m, nn.Conv2d):
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.conv(x)
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class RepCPE(nn.Module):
|
||||
"""Implementation of conditional positional encoding.
|
||||
|
||||
For more details refer to paper: `Conditional Positional Encodings for Vision Transformers
|
||||
<https://arxiv.org/pdf/2102.10882.pdf>`_
|
||||
|
||||
In our implementation, we can reparameterize this module to eliminate a skip connection.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
embed_dim: int = 768,
|
||||
spatial_shape: int | tuple[int, int] = (7, 7),
|
||||
inference_mode=False,
|
||||
) -> None:
|
||||
"""Build reparameterizable conditional positional encoding.
|
||||
|
||||
Args:
|
||||
in_channels: Number of input channels.
|
||||
embed_dim: Number of embedding dimensions. Default: 768
|
||||
spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7)
|
||||
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
|
||||
"""
|
||||
super().__init__()
|
||||
if isinstance(spatial_shape, int):
|
||||
spatial_shape = tuple([spatial_shape] * 2)
|
||||
assert isinstance(spatial_shape, tuple), (
|
||||
f'"spatial_shape" must by a sequence or int, get {type(spatial_shape)} instead.'
|
||||
)
|
||||
assert len(spatial_shape) == 2, f'Length of "spatial_shape" should be 2, got {len(spatial_shape)} instead.'
|
||||
|
||||
self.spatial_shape = spatial_shape
|
||||
self.embed_dim = embed_dim
|
||||
self.in_channels = in_channels
|
||||
self.groups = embed_dim
|
||||
|
||||
if inference_mode:
|
||||
self.reparam_conv = nn.Conv2d(
|
||||
in_channels=self.in_channels,
|
||||
out_channels=self.embed_dim,
|
||||
kernel_size=self.spatial_shape,
|
||||
stride=1,
|
||||
padding=int(self.spatial_shape[0] // 2),
|
||||
groups=self.embed_dim,
|
||||
bias=True,
|
||||
)
|
||||
else:
|
||||
self.pe = nn.Conv2d(
|
||||
in_channels,
|
||||
embed_dim,
|
||||
spatial_shape,
|
||||
1,
|
||||
int(spatial_shape[0] // 2),
|
||||
bias=True,
|
||||
groups=embed_dim,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if hasattr(self, "reparam_conv"):
|
||||
x = self.reparam_conv(x)
|
||||
return x
|
||||
else:
|
||||
x = self.pe(x) + x
|
||||
return x
|
||||
|
||||
def reparameterize(self) -> None:
|
||||
# Build equivalent Id tensor
|
||||
input_dim = self.in_channels // self.groups
|
||||
kernel_value = torch.zeros(
|
||||
(
|
||||
self.in_channels,
|
||||
input_dim,
|
||||
self.spatial_shape[0],
|
||||
self.spatial_shape[1],
|
||||
),
|
||||
dtype=self.pe.weight.dtype,
|
||||
device=self.pe.weight.device,
|
||||
)
|
||||
for i in range(self.in_channels):
|
||||
kernel_value[
|
||||
i,
|
||||
i % input_dim,
|
||||
self.spatial_shape[0] // 2,
|
||||
self.spatial_shape[1] // 2,
|
||||
] = 1
|
||||
id_tensor = kernel_value
|
||||
|
||||
# Reparameterize Id tensor and conv
|
||||
w_final = id_tensor + self.pe.weight
|
||||
b_final = self.pe.bias
|
||||
|
||||
# Introduce reparam conv
|
||||
self.reparam_conv = nn.Conv2d(
|
||||
in_channels=self.in_channels,
|
||||
out_channels=self.embed_dim,
|
||||
kernel_size=self.spatial_shape,
|
||||
stride=1,
|
||||
padding=int(self.spatial_shape[0] // 2),
|
||||
groups=self.embed_dim,
|
||||
bias=True,
|
||||
)
|
||||
self.reparam_conv.weight.data = w_final
|
||||
self.reparam_conv.bias.data = b_final
|
||||
|
||||
for para in self.parameters():
|
||||
para.detach_()
|
||||
self.__delattr__("pe")
|
||||
|
||||
|
||||
class RepMixerBlock(nn.Module):
|
||||
"""Implementation of Metaformer block with RepMixer as token mixer.
|
||||
|
||||
For more details on Metaformer structure, please refer to: `MetaFormer Is Actually What You Need for Vision
|
||||
<https://arxiv.org/pdf/2111.11418.pdf>`_
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
kernel_size: int = 3,
|
||||
mlp_ratio: float = 4.0,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
drop: float = 0.0,
|
||||
drop_path: float = 0.0,
|
||||
use_layer_scale: bool = True,
|
||||
layer_scale_init_value: float = 1e-5,
|
||||
inference_mode: bool = False,
|
||||
):
|
||||
"""Build RepMixer Block.
|
||||
|
||||
Args:
|
||||
dim: Number of embedding dimensions.
|
||||
kernel_size: Kernel size for repmixer. Default: 3
|
||||
mlp_ratio: MLP expansion ratio. Default: 4.0
|
||||
act_layer: Activation layer. Default: ``nn.GELU``
|
||||
drop: Dropout rate. Default: 0.0
|
||||
drop_path: Drop path rate. Default: 0.0
|
||||
use_layer_scale: Flag to turn on layer scale. Default: ``True``
|
||||
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
|
||||
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.token_mixer = RepMixer(
|
||||
dim,
|
||||
kernel_size=kernel_size,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
inference_mode=inference_mode,
|
||||
)
|
||||
|
||||
assert mlp_ratio > 0, f"MLP ratio should be greater than 0, found: {mlp_ratio}"
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.convffn = ConvFFN(
|
||||
in_channels=dim,
|
||||
hidden_channels=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# Drop Path
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
# Layer Scale
|
||||
self.use_layer_scale = use_layer_scale
|
||||
if use_layer_scale:
|
||||
self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_layer_scale:
|
||||
x = self.token_mixer(x)
|
||||
x = x + self.drop_path(self.layer_scale * self.convffn(x))
|
||||
else:
|
||||
x = self.token_mixer(x)
|
||||
x = x + self.drop_path(self.convffn(x))
|
||||
return x
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""Implementation of metaformer block with MHSA as token mixer.
|
||||
|
||||
For more details on Metaformer structure, please refer to: `MetaFormer Is Actually What You Need for Vision
|
||||
<https://arxiv.org/pdf/2111.11418.pdf>`_
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
norm_layer: nn.Module = nn.BatchNorm2d,
|
||||
drop: float = 0.0,
|
||||
drop_path: float = 0.0,
|
||||
use_layer_scale: bool = True,
|
||||
layer_scale_init_value: float = 1e-5,
|
||||
):
|
||||
"""Build Attention Block.
|
||||
|
||||
Args:
|
||||
dim: Number of embedding dimensions.
|
||||
mlp_ratio: MLP expansion ratio. Default: 4.0
|
||||
act_layer: Activation layer. Default: ``nn.GELU``
|
||||
norm_layer: Normalization layer. Default: ``nn.BatchNorm2d``
|
||||
drop: Dropout rate. Default: 0.0
|
||||
drop_path: Drop path rate. Default: 0.0
|
||||
use_layer_scale: Flag to turn on layer scale. Default: ``True``
|
||||
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.norm = norm_layer(dim)
|
||||
self.token_mixer = MHSA(dim=dim)
|
||||
|
||||
assert mlp_ratio > 0, f"MLP ratio should be greater than 0, found: {mlp_ratio}"
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.convffn = ConvFFN(
|
||||
in_channels=dim,
|
||||
hidden_channels=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# Drop path
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
# Layer Scale
|
||||
self.use_layer_scale = use_layer_scale
|
||||
if use_layer_scale:
|
||||
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True)
|
||||
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(self.norm(x)))
|
||||
x = x + self.drop_path(self.layer_scale_2 * self.convffn(x))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm(x)))
|
||||
x = x + self.drop_path(self.convffn(x))
|
||||
return x
|
||||
|
||||
|
||||
def basic_blocks(
|
||||
dim: int,
|
||||
block_index: int,
|
||||
num_blocks: list[int],
|
||||
token_mixer_type: str,
|
||||
kernel_size: int = 3,
|
||||
mlp_ratio: float = 4.0,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
norm_layer: nn.Module = nn.BatchNorm2d,
|
||||
drop_rate: float = 0.0,
|
||||
drop_path_rate: float = 0.0,
|
||||
use_layer_scale: bool = True,
|
||||
layer_scale_init_value: float = 1e-5,
|
||||
inference_mode=False,
|
||||
) -> nn.Sequential:
|
||||
"""Build FastViT blocks within a stage.
|
||||
|
||||
Args:
|
||||
dim: Number of embedding dimensions.
|
||||
block_index: block index.
|
||||
num_blocks: List containing number of blocks per stage.
|
||||
token_mixer_type: Token mixer type.
|
||||
kernel_size: Kernel size for repmixer.
|
||||
mlp_ratio: MLP expansion ratio.
|
||||
act_layer: Activation layer.
|
||||
norm_layer: Normalization layer.
|
||||
drop_rate: Dropout rate.
|
||||
drop_path_rate: Drop path rate.
|
||||
use_layer_scale: Flag to turn on layer scale regularization.
|
||||
layer_scale_init_value: Layer scale value at initialization.
|
||||
inference_mode: Flag to instantiate block in inference mode.
|
||||
|
||||
Returns:
|
||||
nn.Sequential object of all the blocks within the stage.
|
||||
"""
|
||||
blocks = []
|
||||
for block_idx in range(num_blocks[block_index]):
|
||||
block_dpr = drop_path_rate * (block_idx + sum(num_blocks[:block_index])) / (sum(num_blocks) - 1)
|
||||
if token_mixer_type == "repmixer":
|
||||
blocks.append(
|
||||
RepMixerBlock(
|
||||
dim,
|
||||
kernel_size=kernel_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
act_layer=act_layer,
|
||||
drop=drop_rate,
|
||||
drop_path=block_dpr,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
inference_mode=inference_mode,
|
||||
)
|
||||
)
|
||||
elif token_mixer_type == "attention":
|
||||
blocks.append(
|
||||
AttentionBlock(
|
||||
dim,
|
||||
mlp_ratio=mlp_ratio,
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
drop=drop_rate,
|
||||
drop_path=block_dpr,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Token mixer type: {token_mixer_type} not supported")
|
||||
blocks = nn.Sequential(*blocks)
|
||||
|
||||
return blocks
|
||||
|
||||
|
||||
class FastViT(nn.Module):
|
||||
"""This class implements `FastViT architecture <https://arxiv.org/pdf/2303.14189.pdf>`_."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layers,
|
||||
token_mixers: tuple[str, ...],
|
||||
embed_dims=None,
|
||||
mlp_ratios=None,
|
||||
downsamples=None,
|
||||
se_downsamples=None,
|
||||
repmixer_kernel_size=3,
|
||||
norm_layer: nn.Module = nn.BatchNorm2d,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
num_classes=1000,
|
||||
pos_embs=None,
|
||||
down_patch_size=7,
|
||||
down_stride=2,
|
||||
drop_rate=0.0,
|
||||
drop_path_rate=0.0,
|
||||
use_layer_scale=True,
|
||||
layer_scale_init_value=1e-5,
|
||||
init_cfg=None,
|
||||
pretrained=None,
|
||||
cls_ratio=2.0,
|
||||
inference_mode=False,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.num_classes = num_classes
|
||||
if pos_embs is None:
|
||||
pos_embs = [None] * len(layers)
|
||||
|
||||
if se_downsamples is None:
|
||||
se_downsamples = [False] * len(layers)
|
||||
|
||||
# Convolutional stem
|
||||
self.patch_embed = convolutional_stem(3, embed_dims[0], inference_mode)
|
||||
|
||||
# Build the main stages of the network architecture
|
||||
network = []
|
||||
for i in range(len(layers)):
|
||||
# Add position embeddings if requested
|
||||
if pos_embs[i] is not None:
|
||||
network.append(pos_embs[i](embed_dims[i], embed_dims[i], inference_mode=inference_mode))
|
||||
stage = basic_blocks(
|
||||
embed_dims[i],
|
||||
i,
|
||||
layers,
|
||||
token_mixer_type=token_mixers[i],
|
||||
kernel_size=repmixer_kernel_size,
|
||||
mlp_ratio=mlp_ratios[i],
|
||||
act_layer=act_layer,
|
||||
norm_layer=norm_layer,
|
||||
drop_rate=drop_rate,
|
||||
drop_path_rate=drop_path_rate,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
inference_mode=inference_mode,
|
||||
)
|
||||
network.append(stage)
|
||||
if i >= len(layers) - 1:
|
||||
break
|
||||
|
||||
# Patch merging/downsampling between stages.
|
||||
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
|
||||
network.append(
|
||||
PatchEmbed(
|
||||
patch_size=down_patch_size,
|
||||
stride=down_stride,
|
||||
in_channels=embed_dims[i],
|
||||
embed_dim=embed_dims[i + 1],
|
||||
inference_mode=inference_mode,
|
||||
use_se=se_downsamples[i + 1],
|
||||
)
|
||||
)
|
||||
self.network = nn.ModuleList(network)
|
||||
|
||||
# Classifier head
|
||||
self.conv_exp = MobileOneBlock(
|
||||
in_channels=embed_dims[-1],
|
||||
out_channels=int(embed_dims[-1] * cls_ratio),
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
groups=embed_dims[-1],
|
||||
inference_mode=inference_mode,
|
||||
use_se=True,
|
||||
num_conv_branches=1,
|
||||
)
|
||||
self.head = nn.Linear(int(embed_dims[-1] * cls_ratio), num_classes) if num_classes > 0 else nn.Identity()
|
||||
self.apply(self.cls_init_weights)
|
||||
self.init_cfg = copy.deepcopy(init_cfg)
|
||||
|
||||
def cls_init_weights(self, m: nn.Module) -> None:
|
||||
"""Init.
|
||||
|
||||
for classification.
|
||||
"""
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward_embeddings(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.patch_embed(x)
|
||||
return x
|
||||
|
||||
def forward_tokens(self, x: torch.Tensor) -> torch.Tensor:
|
||||
for idx, block in enumerate(self.network):
|
||||
x = block(x)
|
||||
# output only the features of last layer for image classification
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
# input embedding
|
||||
x = self.forward_embeddings(x)
|
||||
# through backbone
|
||||
x = self.forward_tokens(x)
|
||||
# for image classification
|
||||
x = self.conv_exp(x)
|
||||
cls_out = self.head(x)
|
||||
return cls_out
|
||||
|
||||
|
||||
@register_model
|
||||
def mci0(pretrained=False, **kwargs):
|
||||
"""Instantiate MCi0 model variant."""
|
||||
layers = [2, 6, 10, 2]
|
||||
embed_dims = [64, 128, 256, 512]
|
||||
mlp_ratios = [3, 3, 3, 3]
|
||||
downsamples = [True, True, True, True]
|
||||
se_downsamples = [False, False, True, True]
|
||||
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7))]
|
||||
token_mixers = ("repmixer", "repmixer", "repmixer", "attention")
|
||||
model = FastViT(
|
||||
layers,
|
||||
token_mixers=token_mixers,
|
||||
embed_dims=embed_dims,
|
||||
pos_embs=pos_embs,
|
||||
mlp_ratios=mlp_ratios,
|
||||
downsamples=downsamples,
|
||||
se_downsamples=se_downsamples,
|
||||
**kwargs,
|
||||
)
|
||||
model.default_cfg = default_cfgs["fastvit_s"]
|
||||
if pretrained:
|
||||
raise ValueError("Functionality not implemented.")
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mci1(pretrained=False, **kwargs):
|
||||
"""Instantiate MCi1 model variant."""
|
||||
layers = [4, 12, 20, 4]
|
||||
embed_dims = [64, 128, 256, 512]
|
||||
mlp_ratios = [3, 3, 3, 3]
|
||||
downsamples = [True, True, True, True]
|
||||
se_downsamples = [False, False, True, True]
|
||||
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7))]
|
||||
token_mixers = ("repmixer", "repmixer", "repmixer", "attention")
|
||||
model = FastViT(
|
||||
layers,
|
||||
token_mixers=token_mixers,
|
||||
embed_dims=embed_dims,
|
||||
pos_embs=pos_embs,
|
||||
mlp_ratios=mlp_ratios,
|
||||
downsamples=downsamples,
|
||||
se_downsamples=se_downsamples,
|
||||
**kwargs,
|
||||
)
|
||||
model.default_cfg = default_cfgs["fastvit_s"]
|
||||
if pretrained:
|
||||
raise ValueError("Functionality not implemented.")
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def mci2(pretrained=False, **kwargs):
|
||||
"""Instantiate MCi2 model variant."""
|
||||
layers = [4, 12, 24, 4]
|
||||
embed_dims = [80, 160, 320, 640]
|
||||
mlp_ratios = [3, 3, 3, 3]
|
||||
downsamples = [True, True, True, True]
|
||||
se_downsamples = [False, False, True, True]
|
||||
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7))]
|
||||
token_mixers = ("repmixer", "repmixer", "repmixer", "attention")
|
||||
model = FastViT(
|
||||
layers,
|
||||
token_mixers=token_mixers,
|
||||
embed_dims=embed_dims,
|
||||
pos_embs=pos_embs,
|
||||
mlp_ratios=mlp_ratios,
|
||||
downsamples=downsamples,
|
||||
se_downsamples=se_downsamples,
|
||||
**kwargs,
|
||||
)
|
||||
model.default_cfg = default_cfgs["fastvit_m"]
|
||||
if pretrained:
|
||||
raise ValueError("Functionality not implemented.")
|
||||
return model
|
||||
Reference in New Issue
Block a user