
25 50 75
Training Time (h)

25.0

27.5

30.0

32.5

35.0

LV
IS

 A
P

3× Less Time

YOLO-Worldv2
YOLOE (Ours)

100 200 300
FPS w/ TensorRT

1.4
× Speed

up

YOLO-Worldv2
YOLOE (Ours)

40 60
FPS w/ CoreML

1.3
× Sp

eed
up

YOLO-Worldv2
YOLOE (Ours)

1

ar
X

iv
:2

50
3.

07
46

5v
1

 [
cs

.C
V

]
 1

0
M

ar
 2

02
5

⑥ YOLOE：实时看清一切⑥ YOLOE：实时看清一切

王骜 刘力豪 陈辉 林子家 韩军光 丁贵广 清华大学1∗ 1∗ 1 1 1 1 1

摘要摘要

目标检测和分割在计算机视觉应用中被广泛使用，然
而像YOLO系列这样的传统模型，虽然高效且准确，
但受到预定义类别的限制，在开放场景中的适应性较
差。最近的开放集方法利用文本提示、视觉线索或无
提示范式来克服这一问题，但由于高计算需求或部署
复杂性，往往在性能和效率之间做出妥协。在这项工
作中，我们引入了YOLOE，它在一个高效的模型中集
成了多种开放提示机制的检测和分割，实现了实时看
到任何东西。对于文本提示，我们提出了可重新参数
化区域-文本对齐（RepRTA）策略。它通过一个可重
新参数化的轻量级辅助网络来细化预训练的文本嵌
入，并以零推理和转移开销增强视觉-文本对齐。对于
视觉提示，我们提出了语义激活视觉提示编码器
（SAVPE）。它采用解耦的语义和激活分支，以最小的
复杂度带来改进的视觉嵌入和准确性。对于无提示场
景，我们引入了惰性区域-提示对比（LRPC）策略。
它利用内置的大词汇表和专门的嵌入来识别所有对
象，避免了对昂贵语言模型的依赖。大量实验表明，
YOLOE具有出色的零样本性能和可转移性，推理效率
高，训练成本低。值得注意的是，在LVIS上，
YOLOE-v8-S的训练成本降低了3 ，推理速度提高了
1.4 ，比YOLO-Worldv2-S的平均精度（AP）高出
3.5。当转移到COCO时，YOLOE-v8-L比封闭集的
YOLOv8-L的平均精度（AP）提高了0.6 ，训练时间
减少了近 ，增益为0.4 。代码和模型可在
https://github.com/THU-MIG/yoloe获得。

×
×

b

4× AP m

1. 引言1. 引言

目标检测和分割是计算机视觉中的基础任务[15,
48]，具有广泛的应用，涵盖自动驾驶[2]、医学
分析[55]和机器人技术[8]等。

时间减少3倍
YOLO-Worldv2 YOLO-Worldv2

YOLOE（我们的） YOLOE（我们的）

YOLO-Worldv2

YOLOE（我们的）

训练时间（小时） 使用TensorRT的每秒帧数 使用CoreML的每秒帧数

图1. YOLOE（我们的方法）与先进的YOLO-Worldv2在
开放文本提示方面的性能、训练成本和推理效率比较。
LVIS AP在小验证集上评估，使用TensorRT和CoreML的
FPS分别在T4 GPU和iPhone 12上测量。结果突出了我们
的优势。

像YOLO系列 这样的传统方法，利用
卷积神经网络实现了卓越的实时性能。然而，它
们对预定义对象类别的依赖限制了实际开放场景
中的灵活性。这种场景越来越需要能够在各种提
示机制（如文本、视觉线索或无提示）的引导下
检测和分割任意对象的模型。

[1, 3, 21, 47]

鉴于此，最近的研究工作已转向使模型能够对
开放提示进行泛化[5, 20, 49, 80]。它们针对单一
提示类型，例如GLIP[32]，或以统一方式针对多
种提示类型，例如DINO-X[49]。具体而言，通过
区域级视觉语言预训练[32, 37, 65]，文本提示通
常由文本编码器处理，以作为区域特征的对比目
标[20, 49]，从而实现对任意类别的识别，例如
YOLO-World[5]。对于视觉提示，它们通常被编
码为与指定区域相关联的类别嵌入，以便通过与
图像特征或语言对齐的视觉编码器[5, 19, 30, 49]
进行交互来识别相似对象，例如T-Rex2[20]。在
无提示场景中，现有方法通常集成语言模型，依
次根据区域特征找到所有对象并生成相应的类别
名称[49, 62]，例如GenerateU[33]。
尽管取得了显著进展，但仍缺乏一个能够高

效、准确地支持对任意对象的多种开放提示的单
一模型。*共同贡献。

2

例如，DINO-X [49] 具有统一架构，然而，这会带来
资源密集型的训练和推理开销。此外，不同作品中针
对不同提示的单独设计在性能和效率之间表现出次优
的权衡，使得难以直接将它们组合成一个模型。例
如，由于跨模态融合的复杂性 [5, 32, 37, 49]，文本提
示方法在纳入大词汇表时通常会产生大量计算开销。
视觉提示方法通常由于重型变压器设计或对额外视觉
编码器的依赖 [20, 30, 67] 而损害了在边缘设备上的可
部署性。同时，无提示方法依赖于大语言模型，带来
了相当大的内存和延迟成本 [33, 49]。

鉴于这些情况，在本文中，我们介绍了
YOLOE(ye)，这是一种高效、统一且开放的目标检测
与分割模型，类似于人眼，适用于不同的提示机制，
如文本、视觉输入和无提示范式。我们从已被广泛证
明有效的YOLO模型开始。对于文本提示，我们提出
了一种可重新参数化的区域-文本对齐（RepRTA）策
略，该策略采用一个轻量级辅助网络来改进预训练的
文本嵌入，以实现更好的视觉-语义对齐。在训练期
间，预缓存的文本嵌入仅需辅助网络来处理文本提
示，与封闭集训练相比，额外成本较低。在推理和迁
移时，辅助网络无缝地重新参数化为分类头，产生一
个与YOLO模型架构相同且无额外开销的架构。对于
视觉提示，我们设计了一种语义激活的视觉提示编码
器（SAVPE）。通过将感兴趣区域形式化为掩码，
SAVPE将它们与来自PAN的多尺度特征融合，在激活
分支中生成低维的分组提示感知权重，并在语义分支
中提取与提示无关的语义特征。通过对它们进行聚合
得到提示嵌入，从而以最小的复杂度获得良好的性
能。对于无提示场景，我们引入了惰性区域-提示对比
（LRPC）策略。LRPC不依赖于昂贵的语言模型，而
是利用一种专门的提示嵌入来找到所有对象，并使用
一个内置的大词汇表进行类别检索。通过仅将与已识
别对象匹配的锚点与词汇表进行匹配，LRPC确保了
低开销下的高性能。

得益于它们，YOLOE在单个模型中的各种开放提
示机制下的检测和分割方面表现出色，具有高推理效
率和低训练成本。值得注意的是，如图1所示，在
更低的训练成本下，YOLOE-v8-S在LVIS[14]上比
YOLO-Worldv2-S[5]显著高出3.5 AP，在T4和iPhone
12上的推理速度分别提高了1.4 和 。在视觉提
示和无提示设置中，YOLOE-v8-L分别在 更少的
训练数据和 更少的参数下，比T-Rex2高出3.3

 ，比GenerateU高出0.4 AP。

3×

× 1.3×
2×

6.3×
APr

为了迁移到COCO [34]，YOLOE-v8-M/L比YOLOv8-
M/L分别高出0.4/0.6 和0.4/ ，且训练时间
减少了近 。我们希望YOLOE能够建立一个强大的
基线，并激发实时开放提示驱动视觉任务的进一步发
展。

APb 0.4APm

4×

2. 相关工作2. 相关工作

传统检测与分割。传统的目标检测与分割方法主要在
封闭集范式下运行。早期的两阶段框架[4, 12, 15,
48]，以Faster R-CNN[48]为例，引入了区域提议网络
（RPN），随后进行感兴趣区域（ROI）分类和回归。
同时，单阶段检测器[10, 35, 38, 56, 72]通过在单个网
络内基于网格的预测来优先考虑速度。YOLO系列[1,
21, 27, 47, 59, 60]在这一范式中发挥了重要作用，并在
现实世界中广泛使用。此外，DETR[28]及其变体[28,
69, 77]通过采用基于Transformer的架构去除启发式驱
动的组件，标志着一个重大转变。为了获得更细粒度
的结果，现有的实例分割方法预测像素级掩码而不是
边界框坐标[15]。为此，YOLACT[3]通过整合原型掩
码和掩码系数来促进实时实例分割。基于DINO[69]，
MaskDINO[29]利用查询嵌入和高分辨率像素嵌入图来
生成二进制掩码。

文本提示检测与分割。开放词汇目标检测
[13,25,61,68,74 - 76]的最新进展集中在通过将视觉特
征与文本嵌入对齐来检测新类别。具体来说，
GLIP[32]通过对大规模图像 - 文本对进行有基础的预
训练，统一了目标检测和短语定位，展示了强大的零
样本性能。DetCLIP[65]通过用描述丰富概念来促进开
放词汇学习。此外，Grounding DINO[37]通过将跨模
态融合集成到DINO中增强了这一点，改善了文本提
示与视觉表示之间的对齐。YOLO - World[5]进一步展
示了基于YOLO架构预训练具有开放识别能力的小型
检测器的潜力。YOLO - UniOW[36]在YOLO - World
的基础上利用自适应决策学习策略。同样，一些开放
词汇实例分割模型 从先进的基础模
型中学习丰富的视觉语义知识，以对新的目标类别进
行分割。例如，X - Decoder[79]和OpenSeeD[71]探索
了开放词汇检测和分割任务。APE[54]引入了一种通
用视觉感知模型，该模型使用各种文本提示对图像中
的所有对象进行对齐和提示。

[11, 18, 26, 45, 63]

视觉提示检测与分割。

Backbone PAN

Segmentation

Regression
Image

Embedding

P5

P4

P3

man, horse,

dog, cat, …

Text promptText

Encoder

man

horse

dog

Textual

Embedding 𝑃

Auxiliary

Network 𝑓𝜃

Visual prompt

Activation

Branch

Semantic

Branch

Prompt-aware weight
Aggregation

Prompt

Embedding
Semantic-Activated Vis. Prompt Encoder Re-parameterizable Region-Text Alignment

Label

Re-parameterization
Inference

Transferring
Classification

Offline for training/inference

Lazy Region-Prompt Contrast
Specialized EmbeddingAnchor Points

Prompt free

Built-in Vocabulary

Retrieval

Semantic feature

Label = O · PT : RN×D × RD×C → RN×C , (1)

3

分割 免提示 惰性区域提示对比

锚点 专用嵌入 内置词汇！

主干 回归
检索

图像

嵌入

视觉提示
标签

推理激活分支 语义分支
重新参数化

转移
分类

文本嵌入
P

离线训练/推理

提示感知权重

W ∈ R
A×H×W

聚合 辅助网络 fθ 人 文本编码
器

文本提示：
人、马、
狗、猫

马

狗

一

语义特征
语义激活视觉提示编码器 提示嵌入

P

可重新参数化的区域-文本对齐

图2. YOLOE概述，其支持针对各种开放提示机制的检测和分割。对于文本提示，我们设计了一种可重新参数化的区域-
文本对齐策略，以在零推理和传输开销的情况下提高性能。对于视觉提示，采用SAVPE以最小成本通过增强的提示嵌入
对视觉线索进行编码。对于无提示设置，我们引入了惰性区域-提示对比策略，以通过检索有效地为所有识别出的对象
提供类别名称。

虽然文本提示提供了一般性描述，但某些对象仅
用语言描述可能具有挑战性，例如那些需要专业
领域知识的对象。在这种情况下，视觉提示可以
更灵活、更具体地指导检测和分割，补充文本提
示[19, 20]。OV-DETR[67]和OWL-ViT[41]利用
CLIP编码器来处理文本和图像提示。MQ-Det[64]
用来自查询图像的特定类视觉信息增强文本查
询。DINOv[30]将视觉提示作为通用和引用视觉任
务的上下文示例进行探索。T-Rex2[20]通过区域级
对比对齐集成视觉和文本提示。对于分割，基于
大规模数据，SAM[23]提出了一个灵活且强大的模
型，该模型可以进行交互式和迭代式提示。
SEEM[80]进一步探索了用更多种提示类型分割对
象。语义-SAM[31]在语义理解和粒度检测方面表
现出色，处理全景和部分分割任务。

无提示检测与分割。现有的方法在进行开放集
检测与分割推理时仍依赖显式提示。为解决这一
局限性，一些工作[33, 40, 49, 62, 66]探索与生成式
语言模型集成，为所有检测到的对象生成对象描
述。例如，GRiT[62]在密集字幕和对象检测任务中
都使用了文本解码器。DetCLIPv3[66]在大规模数
据上训练对象字幕器，使模型能够生成丰富的标
签信息。GenerateU[33]利用语言模型以自由形式
生成对象名称。

结束语。据我们所知，除了DINO-X[49]，很少
有工作能在单一架构中实现跨各种开放提示机制
的对象检测与分割。然而，DINO-X需要大量的训
练成本和显著的推理开销，严重限制了其在实际
边缘部署中的实用性。

相比之下，我们的YOLOE旨在提供一个高效且统
一的模型，该模型具有实时性能和效率，且易于
部署。

3. 方法3. 方法
在本节中，我们详细介绍YOLOE的设计。基于
YOLOs（3.1节），YOLOE通过RepRTA（3.2节）
支持文本提示，通过SAVPE（3.3节）支持视觉提
示，并通过LRPC（3.4节）支持无提示场景。

3.1. 模型架构3.1. 模型架构

如图2所示，YOLOE采用了典型的YOLO系列架构
[1, 21, 47]，由骨干网络、PAN、回归头、分割头
和对象嵌入头组成。骨干网络和PAN为图像提取多
尺度特征。对于每个锚点，回归头预测用于检测
的边界框，分割头生成用于分割的原型和掩码系
数[3]。对象嵌入头遵循YOLO系列中分类头的结
构，不同之处在于最后 卷积层的输出通道数从
封闭集场景中的类别数改为嵌入维度。同时，给
定文本和视觉提示，我们分别采用RepRTA和
SAVPE将它们编码为归一化的提示嵌入 。它们
用作分类权重，并与锚点的对象嵌入 进行对比
以获得类别标签。该过程可以形式化为

1×

P

O

其中 表示锚点的数量， 表示提示的数量，
分别表示嵌入的特征维度。

N C D

Label = RD×H×W→HW×D(I ⊛K) · (fθ(P))T . (2)

K′ = RC×D→C×D×1×1(fθ(P))⊛KT . (3)

Linear

(a)

Linear

Linear

Axuiliary Network 𝑓𝜃

U

U

C

3
×

3

3
×

3
3

×
3

3
×

3

3
×

3

1 × 1

P5

P4

P3

3
×

3

Semantic Branch

P5

P4

P3

U

U

C

Visual

Prompt

C

Activation
Branch

1
×

1
1

×
1

1
×

1

3 × 3

3 × 3

3 × 3

3 × 3

(b)

Textual

Embedding 𝑃

Prompt

Embedding

Text Prompt

U Upsample C

Aggregation

Concatenation

𝐹𝑉 𝐹𝐼

P = Concat(G1, ..., GA);Gi = Wi:i+1 · ST
D
A

∗i:D
A

∗(i+1). (4)

4

3.2. 可重新参数化的区域-文本对齐3.2. 可重新参数化的区域-文本对齐
在开放集场景中，文本嵌入与对象嵌入之间的对齐
决定了识别类别的准确性。先前的工作通常引入复
杂的跨模态融合来改进视觉-文本表示以实现更好
的对齐[5, 37]。然而，这些方法会带来显著的计算
开销，尤其是在文本数量众多时。鉴于此，我们提
出了可重新参数化的区域-文本对齐（RepRTA）策
略，该策略通过可重新参数化的轻量级辅助网络在
训练期间改进预训练的文本嵌入。文本与锚点对象
嵌入之间的对齐可以通过零推理和转移成本来增
强。

具体来说，对于长度为 的 文本提示，我们
首先使用CLIP文本编码器 来获得预训练的
文本嵌入 文本编码器 。在训练之前，我
们预先缓存数据集中所有文本的嵌入，并且可以移
除文本编码器而无需额外的训练成本。同时，如图
3.(a)所示，我们引入了一个轻量级辅助网络 ，
它只有一个前馈块[53,58]，其中 表示可训练参
数，与封闭集训练相比引入的开销较小。它导出增
强的文本嵌入 ，用于在训练期
间与锚点的对象嵌入进行对比，并导致视觉语义对
齐得到改善。设 是对象嵌入头中
具有输入特征 的最后一个卷积层的
内核参数， 是卷积算子， 是重塑函数，我们
有

C T
[44, 57]

P = (T)

fθ

θ

P = fθ (P) ∈ RC×D

K ∈ RD×D′×1×1

I ∈ RD′×H×W

⊛ R

此外，在训练之后，辅助网络可以与目标嵌入头一
起重新参数化为YOLO的相同分类头。重新参数化
后最后卷积层的新内核参数 可以
通过以下方式推导得出

K ′ ∈ RC×D′×1×1

最终预测可以通过标签 获得，这与原始
的YOLO架构相同，从而在部署和转移到下游封闭
集任务时实现零开销。

= I ⊛ K ′

3.3. 语义激活视觉提示编码器3.3. 语义激活视觉提示编码器
视觉提示旨在通过视觉线索（例如框和掩码）来指
示感兴趣的对象类别。为了生成视觉提示嵌入，先
前的工作通常采用重型Transformer设计[20, 30]，
例如可变形注意力[78]，或额外的CLIP视觉编码器
[44, 67]。然而，由于复杂的算子或高计算需求，
这些方法在部署和效率方面带来了挑战。

辅助网络 fθ 视觉提
示 ✘文本提示 文本嵌入 P ✘

ω 3 × 3

线性 线性

ω ω
✘ ✘

激活
线性

语义分支 3×3
提示嵌入 P

聚合

(上采样 拼接

图3. (a) RepRTA中轻量级辅助网络的结构，它由一个
SwiGLU FFN模块[53]组成。(b) SAVPE的结构，它由生成
与提示无关的语义特征的语义分支和提供分组的提示感知
权重的激活分支组成。因此，通过它们的聚合可以有效地
导出视觉提示嵌入。

考虑到这一点，我们引入了语义激活视觉提示编码
器(SAVPE)来有效处理视觉线索。它具有两个解耦
的轻量级分支：(1) 语义分支在 通道中输出与提
示无关的语义特征，而无需融合视觉线索的开销，
并且(2) 激活分支通过在低成本下在少得多的通道
中使视觉线索与图像特征相互作用来产生分组的提
示感知权重。然后，它们的聚合在最小复杂度下导
致信息丰富的提示嵌入。

D

如图3.(b)所示，在语义分支中，我们采用与对
象嵌入头类似的结构。利用来自PAN的多尺度特征

 ，我们分别对每个尺度使用两个
卷积。上采样后，将特征连接并投影以得到语义特
征 。在激活分支中，我们将视觉提
示形式化为掩码，指示区域为1，其他区域为0。我
们对其进行下采样并利用 卷积得到提示特征

 。此外，我们通过卷积从
 中获取图像特征 以与之

融合。然后将 和 连接起来并用于输出提示
感知权重 ，该权重在提示指示区域
内使用softmax进行归一化。此外，我们将 的通
道分成 组，每组 个通道。第 组中的通道共
享来自 的第 个通道的权重 。利用

 ，我们可以在低维度下用图像特征处理视
觉线索，带来最小的成本。此外，通过两个分支的
聚合可以得到提示嵌入

{P3, P4, P5} 3 × 3

S ∈ R
D×H×W

3 × 3
FV ∈ RA×H×W

{P3, P4, P5} FI ∈ RA×H×W

FV FI

W ∈ RA×H×W

S

A D
A

i

W i Wi:i+1

A ≪ D

因此，它可以与锚点的对象嵌入进行对比，以识别
感兴趣类别的对象。

3.4. 惰性区域提示对比3.4. 惰性区域提示对比
在没有明确指导的无提示场景中，模型需要识别图
像中所有带有名称的对象。

O′ = {o ∈ O | o · PT
s > δ}, (5)

5

先前的工作通常将这种设置表述为一个生成问题，
即使用语言模型为密集发现的对象生成类别[33, 49,
62]。然而，这会带来显著的开销，例如在
GenerateU[33]中使用具有250M参数的FlanT5-base[6]
和在DINO-X[49]中使用OPT-125M[73]等语言模型，
远远无法满足高效性要求。鉴于此，我们将这种设
置重新表述为一个检索问题，并提出了LazyRegion-
Prompt Contrast (LRPC)策略。它以经济高效的方式
从内置的大词汇表中为带有对象的锚点懒检索类别
名称。这种范式对语言模型零依赖，同时具有良好
的效率和性能。

具体而言，对于预训练的YOLOE，我们引入了一
种专门的提示嵌入，并专门对其进行训练以找到所
有对象，其中对象被视为一个类别。同时，我们遵
循[16]收集了一个涵盖各种类别的大词汇表，并将其
用作内置的检索数据源。人们可以直接将大词汇表
用作YOLOE的文本提示来识别所有对象，然而，通
过将大量锚点的对象嵌入与大量文本嵌入进行对
比，这会带来显著的计算成本。相反，我们使用专
门的提示嵌入 通过以下方式找到与对象对应的锚
点集 。

Ps

O′

其中 表示所有锚点， 是用于过滤的阈值超参
数。然后，仅对 中的锚点与内置词汇表进行惰性
匹配以检索类别名称，从而绕过无关锚点的成本。
这进一步提高了效率而不会降低性能，便于实际应
用。

O δ

O′

3.5. 训练目标3.5. 训练目标
在训练过程中，我们遵循[5]为每个镶嵌样本获取一
个在线词汇表，将图像中涉及的文本作为正标签。
遵循[21]，我们利用任务对齐的标签分配来使预测与
真实情况相匹配。二元交叉熵损失用于分类，IoU损
失和分布式焦点损失用于回归。对于分割，我们遵
循[3]使用二元交叉熵损失来优化掩码。

4. 实验4. 实验
4.1. 实现细节4.1. 实现细节
模型。为了与[5]进行公平比较，我们对YOLOE采用
相同的YOLOv8架构[21]。此外，为了验证其在其他
YOLO上的良好通用性，我们还对YOLO11架构[21]
进行了实验。对于这两种架构，我们提供三种模型
规模，即小（S）、中（M）和大（L），以满足各种
应用需求。文本提示使用预训练的MobileCLIP -
B(LT)[57]文本编码器进行编码。默认情况下，我们
在SAVPE中凭经验使用 。A = 16

数据。我们遵循[5]使用检测和定位数据集，包括
Objects365（V1）[52]、GoldG[22]（包括GQA[17]和
Flickr30k[43]），其中排除了来自COCO[34]的图像。
此外，我们利用先进的SAM-2.1[46]模型，使用来自
检测和定位数据集的真实边界框生成伪实例掩码，
用于分割数据。这些掩码经过过滤和简化以消除噪
声[9]。对于视觉提示数据，我们遵循[20]利用真实
边界框作为视觉线索。在无提示任务中，我们使用
相同的数据集，但将所有对象注释为单个类别以学
习专门的提示嵌入。

训练。由于计算资源有限，与YOLO-World训练
100个轮次不同，我们首先使用文本提示对YOLOE
训练30个轮次。然后，我们仅使用视觉提示对
SAVPE训练2个轮次，这避免了支持视觉提示带来的
额外显著训练成本。最后，我们针对无提示场景仅
对专门的提示嵌入训练1个轮次。在文本提示训练阶
段，我们采用与[5]相同的设置。值得注意的是，
YOLOE-v8-S / M / L可以在8块英伟达RTX4090 GPU
上分别在12.0 / 17.0 / 22.5小时内完成训练，与
YOLO-World相比成本降低了 。对于视觉提示训
练，我们冻结所有其他部分并采用与文本提示训练
相同的设置。为了实现无提示能力，我们利用相同
的数据训练一个专门的嵌入。我们可以看到，
YOLOE不仅训练成本低，而且还展现出卓越的零样
本性能。此外，为了验证YOLOE在下游任务上的良
好可迁移性，我们在COCO [34]上对YOLOE进行微
调以用于封闭集检测和分割。我们试验了两种不同
的实际微调策略：(1) 线性探测：只有分类头是可学
习的；(2) 完全微调：所有参数都是可训练的。对于
线性探测，我们仅对所有模型训练10个轮次。对于
完全微调，我们分别对包括YOLOE-v8-S / 11-S在内
的小规模模型训练160个轮次，以及对包括YOLOE-
v8-M / L和YOLOE-11-M / L在内的中大规模模型训
练80个轮次。

3×

对于文本提示评估，我们遵循开放词汇目标检测
任务的标准协议，将基准中的所有类别名称用作输
入。对于视觉提示评估，遵循[20]，对于每个类别，
我们随机采样 训练图像（默认 ），使用
其真实边界框提取视觉嵌入，并计算平均提示嵌
入。对于无提示评估，我们采用与[33]相同的协议。
使用预训练的文本编码器[57]将开放式预测映射到基
准内语义相似的类别名称。与[33]不同的是，我们通
过选择最有信心的预测来简化映射过程，并且无需
进行top-k选择和波束搜索。

N N = 16

Model
Prompt
Type

Params
Training

Data
Training

Time
FPS

T4 / iPhone
AP APr APc APf

T-Rex2 [20] V -
O365,OI,HT
CH,SA-1B

- - / - 37.4 29.9 33.9 41.8

6

表1. LVIS上的零样本检测评估。为了进行公平比较，在LVIS小验证集上以零样本方式报告固定平均精度（Fixed AP）。训
练时间是针对文本提示的，基于8块英伟达V100 GPU用于[32, 65]，以及8块RTX4090 GPU用于YOLO-World和YOLOE。
每秒帧数（FPS）分别在使用TensorRT的英伟达T4 GPU和使用CoreML的iPhone 12上进行测量。结果以文本提示（T）和
视觉提示（V）类型提供。对于训练数据，OI、HT和CH分别表示OpenImages [24]、HierText [39]和CrowdHuman [51]。
OG表示Objects365 [52]和GoldG [22]，G-20M代表Grounding-20M [50]。

模型
提示类型

参数
训练数据 训练时间 FPST4 /

苹果手机 AP APr APc APf

GLIP-T [32] T 232M OG,Cap4M 1337.6h -1- 26.0 20.8 21.4 31.0
GLIPv2-T [70] T 232M OG,Cap4M - -1- 29.0 - - -
GDINO-T [37] T 172M OG,Cap4M - -1- 27.4 18.1 23.3 32.7
DetCLIP-T [65] T 155M OG 250.0h -1- 34.4 26.9 33.9 36.3
G-1.5 Edge [50] T - G-20M - -1- 33.5 28.0 34.3 33.9

T-Rex2 [20] V -
O365.OI,HT
CH.SA-1B - -1- 37.4 29.9 33.9 41.8

YWorldv2-S [5] T 13M OG 41.7h 216.4 / 48.9 24.4 17.1 22.5 27.3
YWorldv2-M [5] T 29M OG 60.0h 117.9 / 34.2 32.4 28.4 29.6 35.5
YWorldv2-L [5] T 48M OG 80.0h 80.0 / 22.1 35.5 25.6 34.6 38.1

YOLOE-v8-S T / V 12M / 13M OG 12.0h 305.8 / 64.3 27.9 / 26.2 22.3 / 21.3 27.8 / 27.7 29.0 / 25.7
YOLOE-v8-M T / V 27M / 30M OG 17.0h 156.7 / 41.7 32.6 / 31.0 26.9 / 27.0 31.9 / 31.7 34.4 / 31.1
YOLOE-v8-L T / V 45M / 50M OG 22.5h 102.5 / 27.2 35.9 / 34.2 33.2 / 33.2 34.8 / 34.6 37.3 / 34.1
YOLOE-11-S T / V 10M / 12M OG 13.0h 301.2 / 73.3 27.5 / 26.3 21.4 / 22.5 26.8 / 27.1 29.3 / 26.4
YOLOE-11-M T / V 21M / 27M OG 18.5h 168.3 / 39.2 33.0 / 31.4 26.9 / 27.1 32.5 / 31.9 34.5 / 31.7
YOLOE-11-L T / V 26M / 32M OG 23.5h 130.5 / 35.1 35.2 / 33.7 29.1 / 28.1 35.0 / 34.6 36.5 / 33.8

我们使用来自[16]的标签列表作为内置大词汇表，共
有4585个类别名称，默认情况下，经验性地将

 用于LRPC。对于所有三种提示类型，按照
[5, 20, 33]，以零样本方式在包含1203个类别的
LVIS[14]上进行评估。默认情况下，报告LVIS小验证
子集上的固定AP[7]。为了迁移到COCO，按照[1, 21]
评估标准AP。此外，我们在配备TensorRT的英伟达T4
GPU和配备CoreML的移动设备iPhone 12上测量所有模
型的FPS。

δ = 0.001

4.2. 文本和视觉提示评估4.2. 文本和视觉提示评估
如表1所示，对于在LVIS数据集上的检测任务，
YOLOE在不同模型规模下的效率和零样本性能之间展
现出良好的权衡。我们还注意到，这些结果是在少得
多的训练时间内取得的，例如，比YOLO-Worldv2快3
倍。具体而言，YOLOE-v8-S / M / L分别比YOLOv8-
Worldv2-S / M / L在 上表现更优，同时
在T4和iPhone12上的推理速度分别加快了

 和 。此外，对
于具有挑战性的稀有类别，我们的YOLOE-v8-S和
YOLOE-v8-L分别取得了 和 的显著提
升。此外，与YOLO-Worldv2相比，虽然YOLOE-v8-M
/ L实现了更低的 ，但这种性能差距主要源于
YOLOE在一个模型中集成了检测和分割。这种多任务
学习引入了一种权衡，对频繁出现类别的检测性能产
生了不利影响，如表5所示。此外，采用YOLO11架构
的YOLOE也展现出良好的性能和效率。

3.5/0.2/0.4AP

1.4 × /1.3 × /1.3× 1.3 × /1.2 × /1.2×

5.2% 7.6%APr

APf

例如，YOLOE-11-L与YOLO-Worldv2-L的平均精度相
当，但在T4和iPhone 12上推理速度显著加快 ，
这突出了我们的YOLOE强大的通用性。

1.6×

此外，视觉提示的加入进一步增强了 YOLOE 的通
用性。与 T - Rex2 相比，YOLOE - v8 - L 在训练数据
少 （T - Rex2：310 万，我们：140 万）且训练资
源低得多（T - Rex2：16 块英伟达 A100 GPU，我们：
8 块英伟达 RTX4090 GPU）的情况下，实现了

 和 的提升。此外，对于视觉提示，虽
然我们仅在冻结其他部分的情况下对 SAVPE 进行 2
个轮次的训练，但我们注意到，对于各种模型规模，
它可以在 和 方面取得与文本提示相当的效
果。这表明视觉提示在处理文本提示往往难以准确描
述的低频对象方面是有效的，这与文献 [20] 中的观察
结果相似。

2×

3.3APr 0.9APc

APr APc

此外，对于分割任务，我们展示了在LVIS验证集上
使用表2中报告的标准 的评估结果。结果表明，
YOLOE通过利用文本提示和视觉提示展现出强大的性
能。具体而言，YOLOE-v8-M / L以零样本方式分别达
到20.8和 ，显著优于在LVIS-Base数据集上
微调的YOLO-Worldv2-M / L，分别高出3.0和
。这些结果充分显示了YOLOE的优越性。

APm

23.5APm

3.7APm

4.3. 无提示评估4.3. 无提示评估
如表3所示，在无提示场景下，YOLOE也展现出卓越
的性能和效率。

7

表2. LVIS上的分割评估。我们使用报告的标准 在
LVIS验证集上评估所有模型。YOLOE支持文本（T）和视
觉线索（V）作为输入。 表示预训练模型在LVIS-Base数
据上针对分割头进行了微调。相比之下，我们以零样本方
式评估YOLOE，在训练期间不使用来自LVIS的任何图
像。

APm

†

模型 提示 APm APm
r APm

c APm
f

YWorld-M † T 16.7 12.6 14.6 20.8
YWorld-L† T 19.1 14.2 17.2 23.5
YWorldv2-M † T 17.8 13.9 15.5 22.0
YWorldv2-L† T 19.8 17.2 17.5 23.6

YOLOE-v8-S T / V 17.7 / 16.8 15.5 / 13.5 16.3 / 16.7 20.3 / 18.2
YOLOE-v8-M T / V 20.8 / 20.3 17.2 / 17.0 19.2 / 20.1 24.2 / 22.0
YOLOE-v8-L T / V 23.5 / 22.0 21.9 / 16.5 21.6 / 22.1 26.4 / 24.3
YOLOE-11-S T / V 17.6 / 17.1 16.1 / 14.4 15.6 / 16.8 20.5 / 18.6
YOLOE-11-M T / V 21.1 / 21.0 17.2 / 18.3 19.6 / 20.6 24.4 / 22.6
YOLOE-11-L T / V 22.6 / 22.5 19.3 / 20.5 20.9 / 21.7 26.0 / 24.1

表3. LVIS上的无提示评估。按照[33]中的协议，在LVIS小
验证集上报告固定平均精度（Fixed AP）。每秒帧数
（FPS）是在配备Pytorch [42]的英伟达T4 GPU上测量的。

模型 骨干网络 参数 AP APr APc APf FPS

GenerateU [33] 斯温-T 297M 26.8 20.0 24.9 29.8 0.48
生成U [33] 斯温-L 467M 27.9 22.3 25.2 31.4 0.40

YOLOE-v8-S YOLOv8-S 13M 21.0 19.1 21.3 21.0 95.8
YOLOE-v8-M YOLOv8-M 29M 24.7 22.2 24.5 25.3 45.9
YOLOE-v8-L YOLOv8-L 47M 27.2 23.5 27.0 28.0 25.3
YOLOE-11-S YOLO11-S 11M 20.6 18.4 20.2 21.3 93.0
YOLOE-11-M YOLO11-M 24M 25.5 21.6 25.5 26.1 42.5
YOLOE-11-L YOLO11-L 29M 26.3 22.7 25.8 27.5 34.9

具体而言，YOLO-v8-L的平均精度均值（AP）达到
27.2，以及23.5 ，比采用Swin-T骨干网络的
GenerateU在AP上高出0.4，在 上高出3.5，同时
参数减少了 ，推理速度加快了 。这表明
通过将开放式问题重新表述为针对内置大词汇量的
检索任务，YOLOE是有效的，并强调了其在不依赖
明确提示的情况下跨广泛类别进行泛化的潜力。这
种功能还增强了YOLOE的实用性，使其能够应用于
更广泛的实际场景中。

APr

APr

6.3× 53×

4.4. 下游迁移4.4. 下游迁移
如表4所示，在向下游封闭集检测和分割任务转移到
COCO数据集时，在两种微调策略下，YOLOE在有
限的训练轮次下都展现出良好的性能。具体而言，
对于线性探测，在不到2%的训练时间内，YOLOE -
11 - M / L分别可以达到YOLO11 - M / L性能的80%以
上。这突出了YOLOE强大的可迁移性。对于完全微
调，YOLOE可以在有限的训练成本下进一步提升性
能。

表4. 在COCO数据集上的下游迁移。我们在COCO数据集
上对YOLOE进行微调，并报告检测和分割的标准AP。我
们采用两种实际的微调策略进行实验，即线性探测和完全
微调。

模型 轮次 APb APb
50 APb

75 APm
APm

50 APm
75

从头开始训练

YOLOv8 - S 500 44.7 61.4 48.7 36.6 58.0 38.6
YOLOv8-M 300 50.0 66.8 54.8 40.5 63.4 43.3
YOLOv8-L 300 52.4 69.3 57.2 42.3 66.0 44.9
YOLO11-S 500 46.6 63.3 50.6 37.8 59.7 40.0
YOLO11-M 600 51.5 68.5 55.7 41.5 65.0 43.9
YOLO11-L 600 53.3 70.1 58.2 42.8 66.8 45.5

线性探测

YOLOE-v8-S 10 35.6 51.5 38.9 30.3 48.2 32.0
YOLOE-v8-M 10 42.2 59.2 46.3 35.5 55.6 37.7
YOLOE-v8-L 10 45.4 63.3 50.0 38.3 59.6 40.8
YOLOE-11-S 10 37.0 52.9 40.4 31.5 49.7 33.5
YOLOE-11-M 10 43.1 60.6 47.4 36.5 56.9 39.0
YOLOE-11-L 10 45.1 62.8 49.5 38.0 59.2 40.6

完全调优

YOLOE-v8-S 160 45.0 61.6 49.1 36.7 58.3 39.1
YOLOE-v8-M 80 50.4 67.0 55.2 40.9 63.7 43.5
YOLOE-v8-L 80 53.0 69.8 57.9 42.7 66.5 45.6
YOLOE-11-S 160 46.2 62.9 50.0 37.6 59.3 40.1
YOLOE-11-M 80 51.3 68.3 56.0 41.5 64.8 44.3
YOLOE-11-L 80 52.6 69.7 57.5 42.4 66.2 45.2

表5. 基于文本提示的YOLOE路线图。标准AP以零样本方
式在LVIS小验证集上报告。FPS分别在配备TensorRT (T)
和CoreML (C)的英伟达T4 GPU和iPhone 12上测量。

模型 轮次 AP APr APc APf
每秒帧数（测试/训练）

YOLO-Worldv2-L 100 33.0 22.6 32.0 35.8 80.0 / 22.1
+ 更少的训练轮次 30 31.0 22.6 28.8 34.2 80.0 / 22.1
+ 全局负样本字典 30 31.9 22.8 31.0 34.4 80.0 / 22.1
• 跨模态融合 30 30.0 19.1 28.0 33.9 102.5 / 27.2
+ 移动CLIP编码器 30 31.5 20.2 30.5 34.4 102.5 / 27.2
+ RepRTA 30 33.5 29.5 32.0 35.5 102.5 / 27.2
+ 分割。(YOLOE) 30 33.3 30.8 32.2 34.6 102.5 / 27.2

例如，在训练轮次减少近 的情况下，YOLOE -
v8 - M / L的性能分别比YOLOv8 - M / L高出

 和0.6 。在训练时间减少 的情况
下，YOLO - v8 - S在检测和分割任务上也比
YOLOv8 - S表现更好。这些结果充分表明，YOLOE
可以作为向下游任务迁移的有力起点。

4×

0.4APm APb 3×

4.5. 消融研究4.5. 消融研究
我们进一步对YOLOE中设计的有效性进行了广泛分
析。实验在YOLOE - v8 - L上进行，默认情况下，在
LVIS小验证集上报告标准AP用于零样本评估。

YOLOE路线图。我们概述了从基线模型YOLOv8-
Worldv2-L到我们的逐步进展

(a) (b) (c) (d)

8

云

图4。(a) 在LVIS上的零样本推理。(b) 使用定制文本提示的结果，其中“白帽子、红帽子、白色汽车、太阳镜、胡
子、领带”作为文本提示。(c) 使用视觉提示的结果，其中红色虚线边界框用作视觉线索。(d) 在无提示场景下的结
果，其中未提供明确提示。更多示例请参考补充材料。

表6。SAVPE的有效性。表7。LRPC的有效性。

模型 AP APr APc APf

掩码池 30.4 27.6 31.3 30.2
SAVPE 31.9 29.4 32.5 31.7

A = 1 30.9 28.2 31.9 30.4
A = 16 31.9 29.4 32.5 31.7
A = 32 31.9 28.2 33.0 31.7

模型 LRPC AP APr APc APf FPS

v8-S

✘ 21.0 19.1 21.4 21.0 56.5
δ = 1e−3 21.0 19.1 21.3 21.0 95.8
δ = 1e−4 21.0 19.1 21.3 21.0 66.1
δ = 1e−2 20.8 19.1 21.2 20.8 106

v8-L
✘ 27.2 23.5 27.0 28.0 19.9

δ = 1e−3 27.2 23.5 27.0 28.0 25.3

表格5中关于文本提示的YOLOE-v8-L。初始基线
指标为33.0% AP，由于计算资源有限，我们首先
将训练轮次减少到30，导致AP为31.0%。此外，我
们不是使用空字符串作为基础数据的负文本，而是
遵循[65]，通过维护一个全局字典来采样更多样化
的负提示。全局字典是通过选择在训练数据中出现
超过100次的类别名称构建的。这导致AP提高了
0.9%。接下来，我们移除跨模态融合以避免昂贵
的视觉-文本特征交互，这导致AP下降了1.9%，但
在T4和iPhone 12上分别实现了 和 的
推理加速。为了解决这种下降，我们使用更强的
MobileCLIP-B(LT)文本编码器[57]来获得更好的预
训练文本嵌入，这将AP恢复到31.5%。此外，我们
采用RepRTA来增强锚点的对象和文本嵌入之间的
对齐，这导致AP显著提高了2.3%，且推理开销为
零，显示了其有效性。最后，我们引入分割头并同
时训练用于检测和分割的YOLOE。尽管由于多任
务学习导致 AP和 下降，但YOLOE
获得了分割任意对象的能力。

1.28× 1.23×

0.2% 0.9APf

SAVPE的有效性。为了验证SAVPE对视觉输入
的有效性，我们移除了激活分支，仅利用掩码池
化，通过公式化的视觉提示掩码聚合语义特征。如
表6所示，SAVPE显著优于“掩码池”，AP值高出
1.5。这是因为“掩码池”忽略了提示指示区域内不
同位置的语义重要性差异，而我们的激活分支有效
地对这种差异进行了建模，从而改善了语义特征的
聚合，并为对比提供了更好的提示嵌入。我们还研
究了激活分支中不同组数（即A）的影响。

如表6所示，仅使用一组（即 ）也可以提高
性能。此外，在 条件下，我们可以实现
31.9 AP的强劲性能，获得良好的平衡，更多组导
致的性能差异很小。

A = 1

A = 16

长期相对位置编码（LRPC）的有效性。为了验
证LRPC在无提示设置下的有效性，我们引入了一
种基线方法，该方法直接利用内置的大词汇表作为
文本提示，让YOLOE识别所有物体。表7展示了比
较结果。我们观察到，在相同性能下，我们的
LRPC通过懒检索已发现物体的锚点类别并跳过大
量无关类别，分别为YOLOE-v8-S / L显著获得了

 的推理加速。这些结果充分突出了其有
效性和实用性。此外，通过设置不同的过滤阈值
，LRPC可以实现不同的性能和效率权衡，例如，
对于YOLOE-v8-S，仅 的性能下降就能实现

 的加速。

1.7 × 1.3×

δ

0.2AP

1.9×

4.6. 可视化分析4.6. 可视化分析
我们在四种场景下对YOLOE进行可视化分析：(1)
图4.(a)中对LVIS进行零样本推理，其类别名称为文
本提示；(2) 图4.(b)中的文本提示，其中可以输入
任意文本作为提示；(3) 图4.(c)中的视觉提示，其
中可以绘制视觉线索作为提示；(4) 图4.(d)中无明
确提示，模型识别所有对象。我们可以看到，
YOLOE在这些不同场景下表现良好，能够准确检
测和分割各种对象，进一步展示了其在各种应用中
的有效性和实用性。

5. 结论5. 结论
在本文中，我们提出了YOLOE，这是一个单一的
高效模型，它通过各种开放提示机制无缝集成了目
标检测和分割。具体来说，我们引入了RepRTA、
SAVPE和LRPC，以使YOLO能够以良好的性能和
低成本处理文本提示、视觉线索和无提示范式。得
益于它们，YOLOE在各种提示方式下都具有强大
能力和高效率，能够实时“所见即所得”。我们希望
它能作为一个强大的基线，以激发进一步的进展。

8400

YOLOE-v8-S YOLOE-v8-M YOLOE-v8-L YOLOE-11-S YOLOE-11-M YOLOE-11-L
Models

0

500

1000

1500

2000

2500

3000

3500

4000

A
nc

ho
r P

oi
nt

 C
ou

nt

Total Count
= 0.01
= 0.001
= 0.0001

13

A. 更多实现细节A. 更多实现细节
数据。我们使用Objects365[52]、GoldG [22]（包括
GQA[17]和Flickr30k [43]）来训练YOLOE。表8展
示了它们的详细信息。我们利用SAM-2.1-Hiera-
Large [46]，以带真实边界框作为提示来生成高质
量的分割掩码伪标签。我们过滤掉面积过小的伪标
签。为了增强掩码边缘的平滑度，我们对掩码应用
高斯核，分别对小掩码和大掩码使用 和

 核。此外，我们按照[9]中的方法对掩码进行
细化，该方法迭代地简化掩码轮廓。这在保留整体
结构的同时减少了噪声像素。

3 × 3

7 × 7

表8. YOLOE训练的数据细节。

数据集 类型 边界框面具 图像 注释。

Objects365 [52] 检测 ✓ ✓ 609k 8,530k
GQA [17] 基础 ✓ ✓ 621k 3,662k
Flickr [43] 基础 ✓ ✓ 149k 638k

训练。对于所有模型，我们采用AdamW优化
器，初始学习率为0.002。批量大小和权重衰减分
别设置为128和0.025。数据增强包括颜色抖动、随
机仿射变换、随机水平翻转和马赛克增强。在迁移
到COCO时，对于线性探测和完全微调，我们使用
初始学习率为0.001的AdamW优化器，将批量大小
和权重衰减分别设置为128和0.025。

B. 对LRPC的更多分析B. 对LRPC的更多分析
为了定性地展示LRPC策略的有效性，我们可视化
了过滤后用于类别检索的保留锚点数量。我们在图
5中展示了它们在LVIS小验证集上随过滤阈值 变
化的平均数量。结果表明，随着 的增加，不同模
型中保留的锚点数量大幅减少。与使用总共8400个
锚点的基线场景相比，这种减少显著降低了计算开
销。例如，对于YOLOE-v8-S，在 时，
有效锚点数量减少了 ，在相同性能下推理速
度提高了 （见论文中的表7）。结果进一步证
实了类别检索中锚点的显著冗余性，并验证了
LRPC的有效性。

δ

δ

δ = 0.001

80%

1.7×

C. 更多可视化结果C. 更多可视化结果
为了定性地展示YOLOE的有效性，我们在各种场
景下展示了更多关于它的可视化结果。
在LVIS上的零样本推理。在图6中，我们展示了

YOLOE在LVIS上的零样本推理能力。

总数

锚
点
数
量

YOLOE-v8-S YOLOE-v8-M
模型

图5. LRPC中不同过滤阈值下保留的锚点数量。
虚线表示总数。

通过利用1203个类别名称作为文本提示，该模型展
示了其在各种图像中检测和分割不同对象的能力。

使用定制文本进行提示。图7展示了使用定制文
本提示的结果。我们可以看到，YOLOE能够解释
通用和特定的文本输入，实现精确的目标检测和细
粒度分割。这种能力允许用户通过定义不同粒度级
别的输入提示来调整模型的行为，以满足特定需
求。

使用视觉输入进行提示。在图8中，我们展示了
以视觉输入作为提示的YOLOE的结果。视觉输入
可以采用各种形式，如边界框、点或手工制作的形
状。它也可以跨图像提供。我们可以看到，通过视
觉提示指示目标对象，YOLOE可以准确找到同一
类别的其他实例。此外，它在不同的对象和图像上
表现良好，展现出强大的能力。

无提示推理。图9展示了采用无提示范式的
YOLOE的结果。我们可以看到，在这种设置下，
YOLOE能够对各种物体实现有效的识别。这突出
了其在预定义输入不可用或不切实际的场景中的实
用性。

Figure 6. Zero-Shot inference on LVIS. The categories of LVIS are provided as text prompts.

{red car, black car, yellow car} {rock, tree, river, animal}{food, drink}

14

图6. LVIS上的零样本推理。LVIS的类别作为文本提示提供。

{食物，饮料} {红色汽车，黑色汽车，黄色汽车} {岩石，树木，河流，动物}

图7. 带有定制文本的提示。YOLOE适用于通用和特定文本提示，以便灵活使用。

图8. 带有视觉输入的提示。YOLOE展示了在各种视觉提示（如边界框（左上角）、点（右上
角）、手工形状（左下角））引导下识别物体的能力。视觉提示也可以应用于跨图像（右下角）。

