第一次提交Yolo项目

This commit is contained in:
lhr
2025-12-27 02:14:11 +08:00
commit 604951f9c2
33 changed files with 5891 additions and 0 deletions

View File

@@ -0,0 +1,6 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All rights reserved.
#

View File

@@ -0,0 +1,97 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
from __future__ import annotations
import torch
import torch.nn as nn
from torch import Tensor
from mobileclip import logger
class GlobalPool(nn.Module):
"""This layers applies global pooling over a 4D or 5D input tensor.
Args:
pool_type (Optional[str]): Pooling type. It can be mean, rms, or abs. Default: `mean`
keep_dim (Optional[bool]): Do not squeeze the dimensions of a tensor. Default: `False`
Notes:
- Input: :math:`(N, C, H, W)` or :math:`(N, C, D, H, W)`
- Output: :math:`(N, C, 1, 1)` or :math:`(N, C, 1, 1, 1)` if keep_dim else :math:`(N, C)`
"""
pool_types = ["mean", "rms", "abs"]
def __init__(self, pool_type: str | None = "mean", keep_dim: bool | None = False, *args, **kwargs) -> None:
super().__init__()
if pool_type not in self.pool_types:
logger.error(f"Supported pool types are: {self.pool_types}. Got {pool_type}")
self.pool_type = pool_type
self.keep_dim = keep_dim
def _global_pool(self, x: Tensor, dims: list):
if self.pool_type == "rms": # root mean square
x = x**2
x = torch.mean(x, dim=dims, keepdim=self.keep_dim)
x = x**-0.5
elif self.pool_type == "abs": # absolute
x = torch.mean(torch.abs(x), dim=dims, keepdim=self.keep_dim)
else:
# default is mean
# same as AdaptiveAvgPool
x = torch.mean(x, dim=dims, keepdim=self.keep_dim)
return x
def forward(self, x: Tensor) -> Tensor:
if x.dim() == 4:
dims = [-2, -1]
elif x.dim() == 5:
dims = [-3, -2, -1]
else:
raise NotImplementedError("Currently 2D and 3D global pooling supported")
return self._global_pool(x, dims=dims)
class GlobalPool2D(nn.Module):
"""This class implements global pooling with linear projection."""
def __init__(self, in_dim: int, out_dim: int, *args, **kwargs) -> None:
super().__init__()
scale = in_dim**-0.5
self.pool = GlobalPool(pool_type="mean", keep_dim=False)
self.proj = nn.Parameter(scale * torch.randn(size=(in_dim, out_dim)))
self.in_dim = in_dim
self.out_dim = out_dim
def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
# x is of shape [batch, in_dim]
assert x.dim() == 4, f"Input should be 4-dimensional (Batch x in_dim x in_height x in_width). Got: {x.shape}"
# [batch, in_dim, in_height, in_width] --> [batch, in_dim]
x = self.pool(x)
# [batch, in_dim] x [in_dim, out_dim] --> [batch, out_dim]
x = x @ self.proj
return x
class SimpleImageProjectionHead(nn.Module):
"""This class implements linear projection head."""
def __init__(self, in_dim: int, out_dim: int) -> None:
super().__init__()
scale = in_dim**-0.5
self.proj = nn.Parameter(scale * torch.randn(size=(in_dim, out_dim)))
self.in_dim = in_dim
self.out_dim = out_dim
def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
# x is of shape [batch, in_dim]
assert x.dim() == 2, f"Input should be 2-dimensional (Batch x in_dim). Got: {x.shape}"
# [batch, in_dim] x [in_dim, out_dim] --> [batch, out_dim]
x = x @ self.proj
return x

View File

@@ -0,0 +1,177 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
#
# For acknowledgment see accompanying ACKNOWLEDGMENTS file.
# Copyright (C) 2024 Apple Inc. All rights reserved.
#
import torch
import torch.nn as nn
from timm.models.layers import SqueezeExcite
__all__ = ["ReparamLargeKernelConv"]
class ReparamLargeKernelConv(nn.Module):
"""Building Block of RepLKNet.
This class defines overparameterized large kernel conv block introduced in `RepLKNet
<https://arxiv.org/abs/2203.06717>`_
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
groups: int,
small_kernel: int,
inference_mode: bool = False,
use_se: bool = False,
activation: nn.Module = nn.GELU(),
) -> None:
"""Construct a ReparamLargeKernelConv module.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
kernel_size: Kernel size of the large kernel conv branch.
stride: Stride size. Default: 1
groups: Group number. Default: 1
small_kernel: Kernel size of small kernel conv branch.
inference_mode: If True, instantiates model in inference mode. Default: ``False``
activation: Activation module. Default: ``nn.GELU``
"""
super().__init__()
self.stride = stride
self.groups = groups
self.in_channels = in_channels
self.out_channels = out_channels
self.activation = activation
self.kernel_size = kernel_size
self.small_kernel = small_kernel
self.padding = kernel_size // 2
# Check if SE is requested
if use_se:
self.se = SqueezeExcite(out_channels, rd_ratio=0.25)
else:
self.se = nn.Identity()
if inference_mode:
self.lkb_reparam = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
dilation=1,
groups=groups,
bias=True,
)
else:
self.lkb_origin = self._conv_bn(kernel_size=kernel_size, padding=self.padding)
if small_kernel is not None:
assert small_kernel <= kernel_size, (
"The kernel size for re-param cannot be larger than the large kernel!"
)
self.small_conv = self._conv_bn(kernel_size=small_kernel, padding=small_kernel // 2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply forward pass."""
if hasattr(self, "lkb_reparam"):
out = self.lkb_reparam(x)
else:
out = self.lkb_origin(x)
if hasattr(self, "small_conv"):
out += self.small_conv(x)
return self.activation(self.se(out))
def get_kernel_bias(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepLKNet-pytorch.
Returns:
Tuple of (kernel, bias) after fusing branches.
"""
eq_k, eq_b = self._fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
if hasattr(self, "small_conv"):
small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn)
eq_b += small_b
eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
return eq_k, eq_b
def reparameterize(self) -> None:
"""Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf.
We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like
structure for inference.
"""
eq_k, eq_b = self.get_kernel_bias()
self.lkb_reparam = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.lkb_origin.conv.dilation,
groups=self.groups,
bias=True,
)
self.lkb_reparam.weight.data = eq_k
self.lkb_reparam.bias.data = eq_b
self.__delattr__("lkb_origin")
if hasattr(self, "small_conv"):
self.__delattr__("small_conv")
@staticmethod
def _fuse_bn(conv: torch.Tensor, bn: nn.BatchNorm2d) -> tuple[torch.Tensor, torch.Tensor]:
"""Method to fuse batchnorm layer with conv layer.
Args:
conv: Convolutional kernel weights.
bn: Batchnorm 2d layer.
Returns:
Tuple of (kernel, bias) after fusing batchnorm.
"""
kernel = conv.weight
running_mean = bn.running_mean
running_var = bn.running_var
gamma = bn.weight
beta = bn.bias
eps = bn.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def _conv_bn(self, kernel_size: int, padding: int = 0) -> nn.Sequential:
"""Helper method to construct conv-batchnorm layers.
Args:
kernel_size: Size of the convolution kernel.
padding: Zero-padding size.
Returns:
A nn.Sequential Conv-BN module.
"""
mod_list = nn.Sequential()
mod_list.add_module(
"conv",
nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
stride=self.stride,
padding=padding,
groups=self.groups,
bias=False,
),
)
mod_list.add_module("bn", nn.BatchNorm2d(num_features=self.out_channels))
return mod_list